Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334617

ABSTRACT

We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.


Subject(s)
Nanotubes, Carbon , Mice , Animals , Humans , Astrocytes/metabolism , Cytokines/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism
2.
Sensors (Basel) ; 23(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37896540

ABSTRACT

Carbon nanotube (CNT) sensors provide a versatile chemical platform for ambient monitoring of ozone (O3) and nitrogen dioxide (NO2), two important airborne pollutants known to cause acute respiratory and cardiovascular health problems. CNTs have shown great potential for use as sensing layers due to their unique properties, including high surface to volume ratio, numerous active sites and crystal facets with high surface reactivity, and high thermal and electrical conductivity. With operational advantages such as compactness, low-power operation, and easy integration with electronics devices, nanotechnology is expected to have a significant impact on portable low-cost environmental sensors. Enhanced sensitivity is feasible by functionalizing the CNTs with polymers, metals, and metal oxides. This paper focuses on the design and performance of a two-element array of O3 and NO2 sensors comprising single-walled CNTs functionalized by covalent modification with organic functional groups. Unlike the conventional chemiresistor in which the change in DC resistance across the sensor terminals is measured, we characterize the sensor array response by measuring both the magnitude and phase of the AC impedance. Multivariate response provides higher degrees of freedom in sensor array data processing. The complex impedance of each sensor is measured at 5 kHz in a controlled gas-flow chamber using gas mixtures with O3 in the 60-120 ppb range and NO2 between 20 and 80 ppb. The measured data reveal response change in the 26-36% range for the O3 sensor and 5-31% for the NO2 sensor. Multivariate optimization is used to fit the laboratory measurements to a response surface mathematical model, from which sensitivity and selectivity are calculated. The ozone sensor exhibits high sensitivity (e.g., 5 to 6 MΩ/ppb for the impedance magnitude) and high selectivity (0.8 to 0.9) for interferent (NO2) levels below 30 ppb. However, the NO2 sensor is not selective.

3.
Materials (Basel) ; 16(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36984098

ABSTRACT

Metal additive processing in polymer: fullerene bulk heterojunction systems is recognized as a viable way for improving polymer photovoltage performance. In this study, the effect of niobium (Nb) metal nanoparticles at concentrations of 2, 4, 6, and 8 mg/mL on poly(3-hexylthiophene-2,5-diyl) (P3HT)-6,6]-phenyl C61-butyric acid methyl ester (PCBM) blends was analyzed. The effect of Nb volume concentration on polymer crystallinity, optical properties, and surface structure of P3HT and PCBM, as well as the enhancement of the performance of P3HT:PC61BM solar cells, are investigated. Absorption of the P3HT:PC61BM mix is seen to have a high intensity and a red shift at 500 nm. The reduction in PL intensity with increasing Nb doping concentrations indicates an increase in PL quenching, suggesting that the domain size of P3HT or conjugation length increases. With a high Nb concentration, crystallinity, material composition, surface roughness, and phase separation are enhanced. Nb enhances PCBM's solubility in P3HT and decreases the size of amorphous P3HT domains. Based on the J-V characteristics and the optoelectronic study of the thin films, the improvement results from a decreased recombination current, changes in morphology and crystallinity, and an increase in the effective exciton lifespan. At high doping concentrations of Nb nanoparticles, the development of the short-circuit current (JSC) is associated with alterations in the crystalline structure of P3HT. The highest-performing glass/ITO/PEDOT:PSS/P3HT:PCBM:Nb/MoO3/Au structures have short-circuit current densities (JSC) of 16.86 mA/cm2, open-circuit voltages (VOC) of 466 mV, fill factors (FF) of 65.73%, and power conversion efficiency (µ) of 5.16%.

4.
J Mech Behav Biomed Mater ; 141: 105795, 2023 05.
Article in English | MEDLINE | ID: mdl-37001249

ABSTRACT

The present work aimed to fabricate a set of hybrid bioactive membrane in the form of bio-nanocomposite films for dental applications using the casting dissolution procedures. The formulation of the targeted materials was consisting of cellulose acetate/bioactive glass/hydroxyapatite/carbon nanotubes with a general abbreviation CA-HAP-BG-SWCNTs. The nanocomposites were characterized using XRD, FTIR, SEM-EDX and Raman spectroscopy. XRD, FTIR and SEM characters confirm the nanocomposites formation with good compatibility. The fabricated materials had a semi crystalline structure. The mechanical and thermal properties, as well as contact angle and bioactivity of the fabricated nanocomposites were investigated. The SEM images for showed beehive-like architectures with a thicker frame for the second material. All fabricated materials showed good thermal behaviors. Furthermore, the agar diffusion antimicrobial study showed that the prepared nanocomposites do not exhibit an antibacterial activity against five pathogenic bacterial strains. Additionally, cytotoxicity of a dental nanocomposite filling agent was evaluated. Vero normal cells were incubated with test materials for 72h at 37 °C and 5% CO2. Cell viability was detected using a SRB assay. All nanocomposites were mildly to non-cytotoxic to Vero cells at high concentration in contrast to the inhibitory effect of doxorubicin which was added at 10-fold lower concertation than the nanocomposites. Hence, the proposed nanocomposite is promising candidates for dental applications.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Animals , Chlorocebus aethiops , Durapatite/chemistry , Vero Cells , Nanocomposites/toxicity , Nanocomposites/chemistry
5.
Materials (Basel) ; 16(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837288

ABSTRACT

Kesterite Cu2ZnSnS4 (CZTS) thin films using various 1,8-diiodooctane (DIO) polymer additive concentrations were fabricated by the electrochemical deposition method. The optical, electrical, morphological, and structural properties of the CZTS thin films synthesized using different concentrations of 5 mg/mL, 10 mg/mL, 15 mg/mL, and 20 mg/mL were investigated using different techniques. Cyclic voltammetry exhibited three cathodic peaks at -0.15 V, -0.54 V, and -0.73 V, corresponding to the reduction of Cu2+, Sn2+, Sn2+, and Zn2+ metal ions, respectively. The analysis of the X-ray diffraction (XRD) pattern indicated the formation of the pure kesterite crystal structure, and the Raman spectra showed pure CZTS with the A1 mode of vibration. Field emission scanning electron microscopy (FE-SEM) indicated that the films are well grown, with compact, crack-free, and uniform deposition and a grain size of approximately 4 µm. For sample DIO-20 mg/mL, the elemental composition of the CZTS thin film was modified to Cu:Zn:Sn: and S = 24.2:13.3:12.3:50.2, which indicates a zinc-rich and copper-poor composition. The X-ray photoelectron spectroscopy (XPS) results confirmed the existence of Cu, Sn, Zn, and S elements and revealed the element oxidation states. The electrochemical deposition synthesis increased the absorption of the CZTS film to more than 104 cm-1 with a band gap between 1.62 eV and 1.51 eV. Finally, the photovoltaic properties of glass/CZTS/CdS/n-ZnO/aluminum-doped zinc oxide (AZO)/Ag solar cells were investigated. The best-performing photovoltaic device, with a DIO concentration of 20 mg/mL, had a short-circuit current density of 16.44 mA/cm2, an open-circuit voltage of 0.465 V, and a fill factor of 64.3%, providing a conversion efficiency of 4.82%.

6.
Nanoscale Horiz ; 7(9): 1065-1072, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35788624

ABSTRACT

Lithography methods are commonly used to create structures in inorganic semiconductors like silicon but have not been widely applied to organic crystals. In this work, electron beam lithography (EBL) is used to pattern structures into single organic photomechanical crystals composed of 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene. The electron beam creates amorphous regions of decomposed molecules, while the reactivity of the unexposed crystal regions is preserved under a removable Au coating. Exposure of the patterned crystal to 365 nm light causes ridges of amorphous material to increase in height by 30-70%. This height increase can be reversed by visible light exposure and undergo multiple cycles. The reversible surface morphology changes are strong enough to rupture a sheet of graphene placed on top of the patterned crystal. Surprisingly, the change in dimensions of the EBL features is an order of magnitude larger than the changes in overall crystal dimensions as deduced from X-ray diffraction experiments and microscopy observations. A dynamic extrusion model is presented to explain how nanoscale features imprinted into single crystals can amplify molecular-level photomechanical changes. This work demonstrates the capability of EBL methods to produce sub-micron structural features on single photomechanical crystals, providing a new route to monolithic light-powered actuator devices.

7.
Dalton Trans ; 51(22): 8557-8570, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35586978

ABSTRACT

Understanding how a ligand affects the steric and electronic properties of a metal is the cornerstone of the inorganic chemistry enterprise. What happens when the ligand is an extended surface? This question is central to the design and implementation of state-of-the-art functional materials containing transition metals. This perspective will describe how these two very different sets of extended surfaces can form well-defined coordination complexes with metals. In the Green formalism, functionalities on oxide surfaces react with inorganics to form species that contain X-type or LX-type interactions between the metal and the oxide. Carbon surfaces are neutral L-type ligands; this perspective focuses on carbons that donate six electrons to a metal. The nature of this interaction depends on the curvature, and thereby orbital overlap, between the metal and the extended π-system from the nanocarbon.

8.
ACS Nano ; 15(5): 8574-8582, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33900719

ABSTRACT

In this work, we explain the origin and the mechanism responsible for the strong enhancement of the Raman signal of sulfur chains encapsulated by single-wall carbon nanotubes by running resonance Raman measurements in a wide range of excitation energies for two nanotube samples with different diameter distributions. The Raman signal associated with the vibrational modes of the sulfur chain is observed when it is confined by small-diameter metallic nanotubes. Moreover, a strong enhancement of the Raman signal is observed for excitation energies corresponding to the formation of excited nanotube-chain-hybrid electronic states. Our hypothesis was further tested by high pressure Raman measurements and confirmed by density functional theory calculations of the electronic density of states of hybrid systems formed by sulfur chains encapsulated by different types of single-wall carbon nanotubes.

9.
Cells ; 9(7)2020 07 01.
Article in English | MEDLINE | ID: mdl-32630262

ABSTRACT

We used single-walled carbon nanotubes chemically functionalized with polyethylene glycol (SWCNT-PEG) to assess the effects of this nanomaterial on astrocytic endocytosis and exocytosis. We observed that the SWCNT-PEG do not affect the adenosine triphosphate (ATP)-evoked Ca2+ elevations in astrocytes but significantly reduce the Ca2+-dependent glutamate release. There was a significant decrease in the endocytic load of the recycling dye during constitutive and ATP-evoked recycling. Furthermore, SWCNT-PEG hampered ATP-evoked exocytotic release of the loaded recycling dye. Thus, by functionally obstructing evoked vesicular recycling, SWCNT-PEG reduced glutamate release from astrocytes via regulated exocytosis. These effects implicate SWCNT-PEG as a modulator of Ca2+-dependent exocytosis in astrocytes downstream of Ca2+, likely at the level of vesicle fusion with/pinching off the plasma membrane.


Subject(s)
Astrocytes/metabolism , Calcium Signaling/drug effects , Calcium/metabolism , Glutamic Acid/metabolism , Membrane Fusion/drug effects , Nanotubes, Carbon/adverse effects , Adenosine Triphosphate/pharmacology , Animals , Astrocytes/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Endocytosis/drug effects , Exocytosis/drug effects , Mice , Mice, Inbred C57BL , Nanotubes, Carbon/chemistry , Polyethylene Glycols/chemistry , Water/chemistry
10.
Article in English | MEDLINE | ID: mdl-32523939

ABSTRACT

Bacterial infections represent nowadays the major reason of biomaterials implant failure, however, most of the available implantable materials do not hold antimicrobial properties, thus requiring antibiotic therapy once the infection occurs. The fast raising of antibiotic-resistant pathogens is making this approach as not more effective, leading to the only solution of device removal and causing devastating consequences for patients. Accordingly, there is a large research about alternative strategies based on the employment of materials holding intrinsic antibacterial properties in order to prevent infections. Between these new strategies, new technologies involving the use of carbon-based materials such as carbon nanotubes, fullerene, graphene and diamond-like carbon shown very promising results. In particular, graphene- and graphene-derived materials (GMs) demonstrated a broad range antibacterial activity toward bacteria, fungi and viruses. These antibacterial activities are attributed mainly to the direct physicochemical interaction between GMs and bacteria that cause a deadly deterioration of cellular components, principally proteins, lipids, and nucleic acids. In fact, GMs hold a high affinity to the membrane proteoglycans where they accumulate leading to membrane damages; similarly, after internalization they can interact with bacteria RNA/DNA hydrogen groups interrupting the replicative stage. Moreover, GMs can indirectly determine bacterial death by activating the inflammatory cascade due to active species generation after entering in the physiological environment. On the opposite, despite these bacteria-targeted activities, GMs have been successfully employed as pro-regenerative materials to favor tissue healing for different tissue engineering purposes. Taken into account these GMs biological properties, this review aims at explaining the antibacterial mechanisms underlying graphene as a promising material applicable in biomedical devices.

11.
ACS Appl Mater Interfaces ; 11(21): 19315-19323, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31083961

ABSTRACT

Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the π-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path toward the improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance while having a negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels.

12.
ACS Nano ; 13(3): 3196-3205, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30785724

ABSTRACT

Red light illumination with photon energy matching the direct band gap of chemical vapor deposition grown single-layer MoS2 with Au metal electrodes was used to induce a photocurrent which was employed instead of dark current for NO2 gas sensing. The resulting Au/MoS2/Au optoelectronic gas sensor showed a significant enhancement of the device sensitivity S toward ppb level of NO2 gas exposure reaching S = 4.9%/ppb (4900%/ppm), where S is a slope of dependence of relative change of the sensor resistance on NO2 concentration. Further optimization of the MoS2-based optoelectronic gas sensor by using graphene (Gr) with a work function lower than that of Au for the electrical contacts to the MoS2 channel allowed an increase of photocurrent. The limit of detection of NO2 gas at the level of 0.1 ppb was obtained for the MoS2 channel with graphene electrodes coated by Au. This value was calculated using experimentally obtained sensitivity and noise values and exceeds the U.S. Environment Protection Agency requirement for NO2 gas detection at ppb level.

13.
J Biomed Mater Res A ; 106(10): 2653-2661, 2018 10.
Article in English | MEDLINE | ID: mdl-29896770

ABSTRACT

Stem cell-based therapies are considered a promising treatment modality for many medical conditions. Several types of stem cells with variable differentiation potentials have been isolated from dental tissues, among them stem cells from apical papilla (SCAP). In parallel, new classes of biocompatible nanomaterials have also been developed, including graphene and carbon nanotube-based materials. The aim of the study was to assess whether graphene dispersion (GD) and water-soluble single walled carbon nanotubes (ws-SWCNT), may enhance SCAPs capacity to undergo neural differentiation. SCAPs cultivated in neuroinductive medium supplemented with GD and ws-SWCNT, separately and in combination, were subjected to neural marker analysis by real-time polymerase chain reaction (neurofilament medium [NF-M], neurogenin-2 [ngn-2], ß III-tubulin, microtubule-associated protein 2) and immunocytochemistry (NeuN and ß III-tubulin). GD, ws-SWCNT, and their combination, had neuro-stimulatory effects on SCAPs, as judged by the production of neural markers. Compared to cells grown in nanomaterial free medium, cells with GD showed higher production of B3T, cells with ws-SWCNT had higher production of ngn-2 and NF-M, while the combination of nanomaterials gave similar levels of both B3T and NF-M as the neuroinductive medium alone, but with the finest neuron-like morphology. In conclusion, GD and ws-SWCNT seem to enhance neural differentiation of SCAP. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2653-2661, 2018.


Subject(s)
Cell Differentiation/drug effects , Cell Lineage/drug effects , Dental Papilla/cytology , Graphite/pharmacology , Mesenchymal Stem Cells/cytology , Nanotubes, Carbon/chemistry , Adipogenesis/drug effects , Biomarkers/metabolism , Cell Shape/drug effects , Chondrogenesis/drug effects , Humans , Immunophenotyping , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Multipotent Stem Cells/cytology , Multipotent Stem Cells/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Osteogenesis/drug effects
14.
ACS Omega ; 3(7): 8129-8134, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-31458949

ABSTRACT

Microcrystals composed of the conjugated organic molecule perylene can be encapsulated beneath single-layer graphene using mild conditions. Scanning electron and atomic force microscopy images show that the graphene exists as a conformal coating on top of the crystal. Raman spectroscopy indicates that the graphene is only slightly perturbed by the underlying crystal, probably due to strain. The graphene layer provides complete protection from a variety of solvents and prevents sublimation of the crystal at elevated temperatures. Time-resolved photoluminescence measurements do not detect any quenching of the perylene emission by the graphene layer, although nonradiative energy transfer within a few nanometers of the crystal-graphene interface cannot be ruled out. The ability to encapsulate samples on a substrate under a graphene monolayer may provide a new way to access and interact with the organic crystal under ambient conditions.

15.
Neuroglia ; 1(2): 327-338, 2018 Dec.
Article in English | MEDLINE | ID: mdl-31106292

ABSTRACT

The unique properties of single-walled carbon nanotubes (SWCNTs) have made them interesting candidates for applications in biomedicine. There are diverse chemical groups that can be attached to SWCNTs in order for these tiny tubes to gain various functionalities, for example, water solubility. Due to the availability of these "functionalization" approaches, SWCNTs are seen as agents for a potential anti-cancer therapy. In this context, we tested different chemically-functionalized forms of SWCNTs to determine which modifications make them better combatants against glioblastoma (astrocytoma grade IV), the deadliest brain cancer. We investigated the effects that two types of water soluble SWCNTs, functionalized with polyethylene glycol (SWCNT-PEG) or tetrahydrofurfuryl-terminated polyethylene glycol (SWCNT-PEG-THFF), have on the morphology and vitality, that is, cell adhesion, proliferation and death rate, of the D54MG human glioblastoma cells in culture. We found that SWCNT-PEG-THFF solute, when added to culture media, makes D54MG cells less round (measured as a significant decrease, by ~23%, in the form factor). This morphological change was induced by the PEG-THFF functional group, but not the SWCNT backbone itself. We also found that SWCNT-PEG-THFF solute reduces the proliferation rate of D54MG cells while increasing the rate of cell death. The functional groups PEG and PEG-THFF, on the other hand, reduce the cell death rate of D54MG human glioma cells. These data indicate that the process of functionalization of SWCNTs for potential use as glioma therapeutics may affect their biological effects.

16.
ACS Appl Mater Interfaces ; 9(42): 37094-37104, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28948759

ABSTRACT

Ultraviolet (UV) photodetectors based on heterojunctions of conventional (Ge, Si, and GaAs) and wide bandgap semiconductors have been recently demonstrated, but achieving high UV sensitivity and visible-blind photodetection still remains a challenge. Here, we utilized a semitransparent film of p-type semiconducting single-walled carbon nanotubes (SC-SWNTs) with an energy gap of 0.68 ± 0.07 eV in combination with a molecular beam epitaxy grown n-ZnO layer to build a vertical p-SC-SWNT/n-ZnO heterojunction-based UV photodetector. The resulting device shows a current rectification ratio of 103, a current photoresponsivity up to 400 A/W in the UV spectral range from 370 to 230 nm, and a low dark current. The detector is practically visible-blind with the UV-to-visible photoresponsivity ratio of 105 due to extremely short photocarrier lifetimes in the one-dimensional SWNTs because of strong electron-phonon interactions leading to exciton formation. In this vertical configuration, UV radiation penetrates the top semitransparent SC-SWNT layer with low losses (10-20%) and excites photocarriers within the n-ZnO layer in close proximity to the p-SC-SWNT/n-ZnO interface, where electron-hole pairs are efficiently separated by a high built-in electric field associated with the heterojunction.

17.
Nanotechnology ; 28(25): 255701, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28498824

ABSTRACT

Advances in the chemical vapor deposition (CVD) growth of graphene have made this material a very attractive candidate for a number of applications including transparent conductors, electronics, optoeletronics, biomedical devices and energy storage. The CVD method requires transfer of graphene on a desired substrate and this is most commonly accomplished with polymers. The removal of polymer carriers is achieved with organic solvents or thermal treatment which makes this approach inappropriate for application to plastic thin films such as polyethylene terephthalate substrates. An ultraclean graphene transfer method under mild conditions is highly desired. In this article, we report a naphthalene-assisted graphene transfer technique which provides a reliable route to residue-free transfer of graphene to both hard and flexible substrates. The quality of the transferred graphene was characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Field effect transistors, based on the naphthalene-transfered graphene, were fabricated and characterized. This work has the potential to broaden the applications of CVD graphene in fields where ultraclean graphene and mild graphene transfer conditions are required.

18.
Nano Lett ; 16(9): 5386-93, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27531707

ABSTRACT

Optical properties of electrochromic materials can be controlled by the application of an electric field allowing recent development of new applications such as smart windows technology for indoor climate control and energy conservation. We report the fabrication of a single-walled nanotube (SWNT) thin film based electro-optical modulator controlled by ionic liquid polarization in which the active electrochromic layer is made of a film of semiconducting (SC-) SWNTs and the counter-electrode is composed of a film of metallic (MT-) SWNTs. Optimization of this electro-optical cell allows the operations with an optical modulation depth of 3.7 dB and a response time in the millisecond range, which is thousands of times faster than typical electrolyte-controlled devices. In addition, a dual electro-optical device was built utilizing electro-optically active SC-SWNT films for each electrode that allowed increasing modulation depth of 6.7 dB while preserving the speed of the response.

19.
J Am Chem Soc ; 138(1): 40-3, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26675065

ABSTRACT

Encapsulation of sulfur in HiPCO-SWNTs leads to large changes in the Raman spectra with the appearance of new peaks at 319, 395, and 715 cm(-1) which originate from the sulfur species within the SWNTs, while the high frequency SWNT bands (ν > 1200 cm(-1)) are decreased in intensity. The encapsulated species also shifts the near-IR interband electronic transitions to lower energy by more than 10%. These effects seem to originate with the van der Waals interaction of the confined sulfur species with the walls of the SWNTs which are not expected to be significant in the case of the previously studied large diameter SWNTs. We suggest that sulfur in the small diameter SWNTs exists as a helical polymeric sulfur chain that enters the SWNT interior in the form of S2 ((3)Σ(g)(-)) molecules which undergo polymerization to linear diradicals.

20.
Acc Chem Res ; 48(8): 2270-9, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26244611

ABSTRACT

Single-walled carbon nanotube (SWNT) thin films provide a unique platform for the development of electronic and photonic devices because they combine the advantages of the outstanding physical properties of individual SWNTs with the capabilities of large area thin film manufacturing and patterning technologies. Flexible SWNT thin film based field-effect transistors, sensors, detectors, photovoltaic cells, and light emitting diodes have been already demonstrated, and SWNT thin film transparent, conductive coatings for large area displays and smart windows are under development. While chirally pure SWNTs are not yet commercially available, the marketing of semiconducting (SC) and metallic (MT) SWNTs has facilitated progress toward applications by making available materials of consistent electronic structure. Nevertheless the electrical transport properties of networks of separated SWNTs are inferior to those of individual SWNTs. In particular, for semiconducting SWNTs, which are the subject of this Account, the electrical transport drastically differs from the behavior of traditional semiconductors: for example, the bandgap of germanium (E = 0.66 eV) roughly matches that of individual SC-SWNTs of diameter 1.5 nm, but in the range 300-100 K, the intrinsic carrier concentration in Ge decreases by more than 10 orders of magnitude while the conductivity of a typical SC-SWNT network decreases by less than a factor of 4. Clearly this weak modulation of the conductivity hinders the application of SC-SWNT films as field effect transistors and photodetectors, and it is the purpose of this Account to analyze the mechanism of the electrical transport leading to the unusually weak temperature dependence of the electrical conductivity of such networks. Extrinsic factors such as the contribution of residual amounts of MT-SWNTs arising from incomplete separation and doping of SWNTs are evaluated. However, the observed temperature dependence of the conductivity indicates the presence of midgap electronic states in the semiconducting SWNTs, which provide a source of low-energy excitations, which can contribute to hopping conductance along the nanotubes following fluctuation induced tunneling across the internanotube junctions, which together dominate the low temperature transport and limit the resistivity of the films. At high temperatures, the intrinsic carriers thermally activated across the bandgap as in a traditional semiconductor became available for band transport. The midgap states pin the Fermi level to the middle of the bandgap, and their origin is ascribed to defects in the SWNT walls. The presence of such midgap states has been reported in connection with scanning tunneling spectroscopy experiments, Coulomb blockade observations in low temperature electrical measurements, selective electrochemical deposition imaging, tip-enhanced Raman spectroscopy, high resolution photocurrent spectroscopy, and the modeling of the electronic density of states associated with various defects. Midgap states are present in conventional semiconductors, but what is unusual in the present context is the extent of their contribution to the electrical transport in networks of semiconducting SWNTs. In this Account, we sharpen the focus on the midgap states in SC-SWNTs, their effect on the electronic properties of SC-SWNT networks, and the importance of these effects on efforts to develop electronic and photonic applications of SC-SWNTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...