Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; : e0022724, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847518

ABSTRACT

We report the draft genome of Bacillus thuringiensis strain V-AB8.18, comprising 308 contigs totaling 6,182,614 bp, with 35% G + C content. It contains 6,151 putative protein-coding genes, including App6 and Cry5-like crystal proteins, exhibiting 99% pairwise identity to nematicidal proteins App6Aa2 and Cry5Ba2, active against Meloidogyne incognita and Meloidogyne hapla.

2.
Appl Microbiol Biotechnol ; 107(20): 6407-6419, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37632523

ABSTRACT

Nanotechnology is a promising way to enhance the stability of Bacillus thuringiensis (Bt) insecticidal proteins under environmental conditions. In this work, two emulsions were prepared through the Pickering emulsion technique, stabilized by Cu2+-SQDs/S-CN nanocomposites and by GO nanosheets. In addition, a pH-sensitive polymer was incorporated into these emulsions, allowing the Bt protein, Cry1Ab, to be released in an alkaline pH environment, as it occurs in the lepidopteran pests' gut. The effectiveness of these two nanomaterials in protecting Cry1Ab from degradation, and therefore enhancing its pesticidal activity, was assessed by exposing samples of the purified unprotected protein and encapsulated protein to high-intensity UV light and 40°C temperature treatments. The UV treatment results were evaluated using SDS-PAGE analysis and pointed out that Cry1Ab could be structurally protected by the emulsions. The bioassays with first instar larvae of the lepidopteran pest Ostrinia nubilalis confirm the nanomaterial protection to UV and temperature treatments, i.e., decreasing about half the degradation rate and increasing up to 12-fold the residual activity after UV treatment. Our results indicate that encapsulation could be an effective strategy to improve the effectiveness of Cry1Ab under environmental conditions. KEY POINTS: • Pickering emulsions are effective for solubilized Cry1Ab encapsulation. • Structural and toxicity Cry1Ab properties are enhanced by pH-sensitive encapsulation. • Cu2+-SQDs/S-CN and GO nanomaterials improve the efficacy of Bt insecticides.

3.
Int. microbiol ; 26(2): 295-308, May. 2023. tab, ilus
Article in English | IBECS | ID: ibc-220223

ABSTRACT

Bacillus thuringiensis (Bt) is a Gram-positive bacterium that accumulates pesticidal proteins (Cry and Cyt) in parasporal crystals. Proteins from the Cry5, App6 (formerly Cry6), Cry12, Cry13, Cry14, Cry21, and Xpp55 (formerly Cry55) families have been identified as toxic to nematodes. In this study, a total of 846 Bt strains belonging to four collections were analyzed to determine the diversity and distribution of the Bt Cry nematicidal protein genes. We analyzed their presence by PCR, and positives were confirmed by sequencing. As a result, 164 Bt isolates (20%) contained at least one gene coding for nematicidal Cry proteins. The cry5 and cry21 genes were enriched in collection 1 and were often found together in the same strain. Differently, in collection 4, obtained from similar habitats but after 10 years, cry14 was the gene most frequently found. In collection 2, cry5 and app6 were the most abundant genes, and collection 3 had a low incidence of any of these genes. The results point to high variability in the frequencies of the studied genes depending on the timing, geographical origins, and sources. The occurrence of cry1A, cry2, and cry3 genes was also analyzed and showed that the nematicidal Cry protein genes were frequently accompanied by cry1A + cry2. The expression of the genes was assessed by mass spectrometry showing that only 14% of the positive strains produced nematicidal proteins. To our knowledge, this is the first comprehensive screening that examines the presence and expression of genes from the seven known Bt Cry nematicidal families.(AU)


Subject(s)
Humans , Bacillus thuringiensis , Nematoda , Bacterial Toxins , Proteomics , Microbiology , Microbiological Techniques
4.
Int Microbiol ; 26(2): 295-308, 2023 May.
Article in English | MEDLINE | ID: mdl-36484913

ABSTRACT

Bacillus thuringiensis (Bt) is a Gram-positive bacterium that accumulates pesticidal proteins (Cry and Cyt) in parasporal crystals. Proteins from the Cry5, App6 (formerly Cry6), Cry12, Cry13, Cry14, Cry21, and Xpp55 (formerly Cry55) families have been identified as toxic to nematodes. In this study, a total of 846 Bt strains belonging to four collections were analyzed to determine the diversity and distribution of the Bt Cry nematicidal protein genes. We analyzed their presence by PCR, and positives were confirmed by sequencing. As a result, 164 Bt isolates (20%) contained at least one gene coding for nematicidal Cry proteins. The cry5 and cry21 genes were enriched in collection 1 and were often found together in the same strain. Differently, in collection 4, obtained from similar habitats but after 10 years, cry14 was the gene most frequently found. In collection 2, cry5 and app6 were the most abundant genes, and collection 3 had a low incidence of any of these genes. The results point to high variability in the frequencies of the studied genes depending on the timing, geographical origins, and sources. The occurrence of cry1A, cry2, and cry3 genes was also analyzed and showed that the nematicidal Cry protein genes were frequently accompanied by cry1A + cry2. The expression of the genes was assessed by mass spectrometry showing that only 14% of the positive strains produced nematicidal proteins. To our knowledge, this is the first comprehensive screening that examines the presence and expression of genes from the seven known Bt Cry nematicidal families.


Subject(s)
Bacillus thuringiensis , Humans , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Endotoxins/genetics , Endotoxins/chemistry , Endotoxins/metabolism , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/metabolism , Pest Control, Biological/methods , Ecosystem , Hemolysin Proteins/genetics , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism
5.
Microb Biotechnol ; 15(10): 2607-2618, 2022 10.
Article in English | MEDLINE | ID: mdl-35830334

ABSTRACT

Vip3 proteins are produced by Bacillus thuringiensis and are toxic against lepidopterans, reason why the vip3Aa gene has been introduced into cotton and corn to control agricultural pests. Recently, the structure of Vip3 proteins has been determined and consists of a tetramer where each monomer is composed of five structural domains. The transition from protoxin to the trypsin-activated form involves a major conformational change of the N-terminal Domain I, which is remodelled into a tetrameric coiled-coil structure that is thought to insert into the apical membrane of the midgut cells. To better understand the relevance of this major change in Domain I for the insecticidal activity, we have generated several mutants aimed to alter the activity and remodelling capacity of this central region to understand its function. These mutants have been characterized by proteolytic processing, negative staining electron microscopy, and toxicity bioassays against Spodoptera exigua. The results show the crucial role of helix α1 for the insecticidal activity and in restraining the Domain I in the protoxin conformation, the importance of the remodelling of helices α2 and α3, the proteolytic processing that takes place between Domains I and II, and the role of the C-t Domains IV and V to sustain the conformational change necessary for toxicity.


Subject(s)
Bacillus thuringiensis , Insecticides , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/toxicity , Endotoxins/genetics , Endotoxins/metabolism , Endotoxins/toxicity , Insecticides/metabolism , Insecticides/pharmacology , Spodoptera/metabolism , Trypsin/chemistry , Trypsin/metabolism
6.
Appl Microbiol Biotechnol ; 106(4): 1745-1758, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35138453

ABSTRACT

Bacillus thuringiensis Cry1I insecticidal proteins are structurally similar to other three-domain Cry proteins, although their size, activity spectrum, and expression at the stationary phase are unique among other members of the Cry1 family. The mode of action of Cry1 proteins is not completely understood but the existence of an activation step prior to specific binding is widely accepted. In this study, we attempted to characterize and determine the importance of the activation process in the mode of action of Cry1I, as Cry1Ia protoxin or its partially processed form showed significantly higher toxicity to Ostrinia nubilalis than the fully processed protein either activated with trypsin or with O. nubilalis midgut juice. Oligomerization studies showed that Cry1Ia protoxin, in solution, formed dimers spontaneously, and the incubation of Cry1Ia protoxin with O. nubilalis brush border membrane vesicles (BBMV) promoted the formation of dimers of the partially processed form. While no oligomerization of fully activated proteins after incubation with BBMV was detected. The results of the in vitro competition assays showed that both the Cry1Ia protoxin and the approx. 50 kDa activated proteins bind specifically to the O. nubilalis BBMV and compete for the same binding sites. Accordingly, the in vivo binding competition assays show a decrease in toxicity following the addition of an excess of 50 kDa activated protein. Consequently, as full activation of Cry1I protein diminishes its toxicity against lepidopterans, preventing or decelerating proteolysis might increase the efficacy of this protein in Bt-based products. KEY POINTS: • Processing Cry1I to a 50 kDa stable core impairs its full toxicity to O. nubilalis • Partially processed Cry1Ia protoxin retains the toxicity of protoxin vs O. nubilalis • Protoxin and its final processed forms compete for the same functional binding sites.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/toxicity , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Larva
8.
Toxins (Basel) ; 12(11)2020 10 26.
Article in English | MEDLINE | ID: mdl-33114565

ABSTRACT

Discovery and identification of novel insecticidal proteins in Bacillus thuringiensis (Bt) strains are of crucial importance for efficient biological control of pests and better management of insect resistance. In this study, the Bt strain KhF, toxic for Plodia interpunctella and Grapholita molesta larvae, underwent genomics and proteomics analyses to achieve a better understanding of the bases of its pathogenicity. The whole-genome sequencing results revealed that the KhF strain contained nine coding sequences with homologies to Bt insecticidal genes. The lepidopteran toxic mixture of spores and crystals of this Bt strain was subjected to liquid chromatography and tandem mass spectrometry (LC-MS/MS) to assess the protein composition. The results of the proteomic analyses, combined with the toxin gene sequences, revealed that two of the main components of the crystals were two new candidate pesticidal proteins, named KhFA and KhFB. These proteins showed a similarity lower than 36% to the other known Bt toxins. The phylogenetic analysis showed that the KhFA and KhFB grouped with the newly denominated Xpp and Mpp (former ETX/Mtx) pesticidal protein groups, respectively. Altogether, this study has led to the discovery of two novel candidate pesticidal toxins in the lepidopteran toxic KhF strain.


Subject(s)
Bacillus thuringiensis Toxins , Bacillus thuringiensis , Bacterial Proteins , Biological Control Agents , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins/genetics , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genomics , Lepidoptera , Pest Control, Biological , Pesticides , Proteomics
9.
Nat Commun ; 11(1): 3974, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32769995

ABSTRACT

Bacillus thuringiensis Vip3 (Vegetative Insecticidal Protein 3) toxins are widely used in biotech crops to control Lepidopteran pests. These proteins are produced as inactive protoxins that need to be activated by midgut proteases to trigger cell death. However, little is known about their three-dimensional organization and activation mechanism at the molecular level. Here, we have determined the structures of the protoxin and the protease-activated state of Vip3Aa at 2.9 Å using cryo-electron microscopy. The reconstructions show that the protoxin assembles into a pyramid-shaped tetramer with the C-terminal domains exposed to the solvent and the N-terminal region folded into a spring-loaded apex that, after protease activation, drastically remodels into an extended needle by a mechanism akin to that of influenza haemagglutinin. These results provide the molecular basis for Vip3 activation and function, and serves as a strong foundation for the development of more efficient insecticidal proteins.


Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Amino Acid Motifs , Bacterial Proteins/ultrastructure , Models, Molecular , Protein Domains , Protein Structure, Secondary , Trypsin/metabolism
10.
Toxins (Basel) ; 12(2)2020 02 21.
Article in English | MEDLINE | ID: mdl-32098045

ABSTRACT

Bacillus thuringiensis (Bt) produces insecticidal proteins that are either secreted during the vegetative growth phase or accumulated in the crystal inclusions (Cry proteins) in the stationary phase. Cry1I proteins share the three domain (3D) structure typical of crystal proteins but are secreted to the media early in the stationary growth phase. In the generally accepted mode of action of 3D Cry proteins (sequential binding model), the formation of an oligomer (tetramer) has been described as a major step, necessary for pore formation and subsequent toxicity. To know if this could be extended to Cry1I proteins, the formation of Cry1Ia oligomers was studied by Western blot, after the incubation of trypsin activated Cry1Ia with insect brush border membrane vesicles (BBMV) or insect cultured cells, using Cry1Ab as control. Our results showed that Cry1Ia oligomers were observed only after incubation with susceptible coleopteran BBMV, but not following incubation with susceptible lepidopteran BBMV or non-susceptible Sf21 insect cells, while Cry1Ab oligomers were persistently detected after incubation with all insect tissues tested, regardless of its host susceptibility. The data suggested oligomerization may not necessarily be a requirement for the toxicity of Cry1I proteins.


Subject(s)
Bacillus thuringiensis Toxins/metabolism , Bacillus thuringiensis/metabolism , Coleoptera/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Lepidoptera/metabolism , Membrane Proteins/metabolism , Microvilli/metabolism , Protein Multimerization , Animals , Bacillus thuringiensis Toxins/genetics , Binding Sites , Endotoxins/genetics , Hemolysin Proteins/genetics , Protein Binding , Sf9 Cells
11.
Sci Rep ; 9(1): 18201, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796830

ABSTRACT

Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper) are two important defoliation pests of soybeans. In the present study, we have investigated the susceptibility and brush border membrane-binding properties of both species to Bacillus thuringiensis Cry1Ea toxin. Bioassays performed in first-instar larvae demonstrated potent activity against both soybean pests in terms of mortality or practical mortality. Competition-binding studies carried out with 125Iodine-labelled Cry1Ea, demonstrated the presence of specific binding sites on the midgut brush border membrane vesicles (BBMV) of both insect species. Heterologous competition-binding experiments indicated that Cry1Ea does not share binding sites with Cry1Ac or Cry1Fa in either soybean pest. This study contributes to the knowledge of Cry1Ea toxicity and midgut binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ea with other Bt proteins aimed at controlling lepidopteran pests in soybeans.


Subject(s)
Bacterial Proteins/pharmacology , Biological Control Agents/pharmacology , Endotoxins/pharmacology , Glycine max/parasitology , Hemolysin Proteins/pharmacology , Larva/drug effects , Moths/drug effects , Animals , Bacillus thuringiensis Toxins , Binding Sites , Biological Assay , Larva/metabolism , Microvilli/metabolism , Moths/cytology , Moths/metabolism
12.
Appl Environ Microbiol ; 83(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28363958

ABSTRACT

Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa 125-iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both A. gemmatalis and C. includens Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.IMPORTANCE In the present study, the toxicity and the mode of action of the Bacillus thuringiensis (Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in Anticarsia gemmatalis and Chrysodeixis includens (important defoliating pests of soybeans) have been investigated. These studies are crucial for determining management strategies for pest control. Bioassays showed that both insects were susceptible to the toxins. Competition-binding studies demonstrated the presence of Cry1Fa- and Cry1Ac-specific binding sites in the midguts of both pests. These results, together with the results from binding inhibition studies performed with sugars and lectins, indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites, and that they were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.


Subject(s)
Bacterial Proteins/toxicity , Endotoxins/toxicity , Glycine max/parasitology , Hemolysin Proteins/toxicity , Moths/drug effects , Plant Diseases/parasitology , Animals , Bacillus thuringiensis/chemistry , Bacillus thuringiensis Toxins , Larva/drug effects , Larva/physiology , Moths/physiology , Pest Control, Biological , Plant Diseases/prevention & control
13.
Toxins (Basel) ; 9(4)2017 04 07.
Article in English | MEDLINE | ID: mdl-28387713

ABSTRACT

Vip3 proteins are secretable proteins from Bacillus thuringiensis whose mode of action is still poorly understood. In this study, the activation process for Vip3 proteins was closely examined in order to better understand the Vip3Aa protein stability and to shed light on its structure. The Vip3Aa protoxin (of 89 kDa) was treated with trypsin at concentrations from 1:100 to 120:100 (trypsin:Vip3A, w:w). If the action of trypsin was not properly neutralized, the results of SDS-PAGE analysis (as well as those with Agrotis ipsilon midgut juice) equivocally indicated that the protoxin could be completely processed. However, when the proteolytic reaction was efficiently stopped, it was revealed that the protoxin was only cleaved at a primary cleavage site, regardless of the amount of trypsin used. The 66 kDa and the 19 kDa peptides generated by the proteases co-eluted after gel filtration chromatography, indicating that they remain together after cleavage. The 66 kDa fragment was found to be extremely resistant to proteases. The trypsin treatment of the protoxin in the presence of SDS revealed the presence of secondary cleavage sites at S-509, and presumably at T-466 and V-372, rendering C-terminal fragments of approximately 29, 32, and 42 kDa, respectively. The fact that the predicted secondary structure of the Vip3Aa protein shows a cluster of beta sheets in the C-terminal region of the protein might be the reason behind the higher stability to proteases compared to the rest of the protein, which is mainly composed of alpha helices.


Subject(s)
Bacterial Proteins/chemistry , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/toxicity , Intestinal Secretions/metabolism , Larva/drug effects , Lepidoptera/drug effects , Peptides/metabolism , Protein Structure, Secondary , Proteolysis , Trypsin/metabolism
15.
Curr Opin Insect Sci ; 15: 89-96, 2016 06.
Article in English | MEDLINE | ID: mdl-27436737

ABSTRACT

Bioinsecticides based on Bacillus thuringiensis have long been used as an alternative to synthetic insecticides to control insect pests. In this review, we focus on insects of the genus Spodoptera, including relevant polyphagous species that are primary and secondary pests of many crops, and how B. thuringiensis toxins can be used for Spodoptera spp. pest management. We summarize the main findings related to susceptibility, midgut binding specificity, mechanisms of response and resistance of this insect genus to B. thuringiensis toxins.


Subject(s)
Bacterial Toxins/pharmacology , Insecticide Resistance/physiology , Spodoptera/drug effects , Animals , Bacillus thuringiensis/chemistry , Bacterial Toxins/genetics , Insecticide Resistance/genetics , Spodoptera/genetics
16.
Microbiol Mol Biol Rev ; 80(2): 329-50, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26935135

ABSTRACT

Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Insecticides/chemistry , Amino Acid Sequence , Animals , Bacteria/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Toxins/genetics , Bacterial Toxins/pharmacology , Conserved Sequence , Drug Resistance , Insecta/drug effects , Insecticides/pharmacology , Pest Control, Biological , Plants, Genetically Modified/genetics , Protein Conformation , Protein Engineering
17.
PLoS One ; 10(5): e0125991, 2015.
Article in English | MEDLINE | ID: mdl-25993013

ABSTRACT

Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Bacterial Proteins/toxicity , Baculoviridae/pathogenicity , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Insect Proteins/metabolism , Spodoptera/drug effects , Spodoptera/immunology , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/genetics , Bacillus thuringiensis/pathogenicity , Bacillus thuringiensis Toxins , Digestive System/drug effects , Digestive System/immunology , Digestive System/virology , Insect Proteins/genetics , Larva/drug effects , Larva/immunology , Larva/virology , Molecular Sequence Data , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Muramidase/genetics , Muramidase/metabolism , Pest Control, Biological , Phylogeny , Sequence Homology, Amino Acid , Spodoptera/virology
18.
J Invertebr Pathol ; 117: 51-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24508583

ABSTRACT

Five Bacillus thuringiensis Vip3A proteins (Vip3Aa, Vip3Ab, Vip3Ad, Vip3Ae and Vip3Af) and their corresponding trypsin-activated toxins were tested for their toxicity against eight lepidopteran pests: Agrotis ipsilon, Helicoverpa armigera, Mamestra brassicae, Spodoptera exigua, Spodoptera frugiperda, Spodoptera littoralis, Ostrinia nubilalis and Lobesia botrana. Toxicity was first tested at a high dose at 7 and 10 days. No major differences were found when comparing protoxins vs. trypsin-activated toxins. The proteins that were active against most of the insect species were Vip3Aa, Vip3Ae and Vip3Af, followed by Vip3Ab. Vip3Ad was non-toxic to any of the species tested. Considering the results by insect species, A. ipsilon, S. frugiperda and S. littoralis were susceptible to Vip3Aa, Vip3Ab, Vip3Ae and Vip3Af; S. exigua was susceptible to Vip3Aa and Vip3Ae, and moderately susceptible to Vip3Ab; M. brassicae and L. botrana were susceptible to Vip3Aa, Vip3Ae and Vip3Af; H. armigera was moderately susceptible to Vip3Aa, Vip3Ae and Vip3Af, and O. nubilalis was tolerant to all Vip3 proteins tested, although it showed some susceptibility to Vip3Af. The results obtained will help to design new combinations of insecticidal protein genes in transgenic crops or in recombinant bacteria for the control of insect pests.


Subject(s)
Bacterial Proteins/genetics , Insecticide Resistance/genetics , Lepidoptera/genetics , Lepidoptera/parasitology , Pest Control, Biological/methods , Amino Acid Sequence , Animals , Bacterial Proteins/metabolism , Molecular Sequence Data , Plants, Genetically Modified
19.
PLoS One ; 8(12): e81927, 2013.
Article in English | MEDLINE | ID: mdl-24312604

ABSTRACT

Host-pathogen interactions result in complex relationship, many aspects of which are not completely understood. Vip proteins, which are Bacillus thuringensis (Bt) insecticidal toxins produced during the vegetative stage, are selectively effective against specific insect pests. This new group of Bt proteins represents an interesting alternative to the classical Bt Cry toxins because current data suggests that they do not share the same mode of action. We have designed and developed a genome-wide microarray for the beet armyworm Spodoptera exigua, a serious lepidopteran pest of many agricultural crops, and used it to better understand how lepidopteran larvae respond to the treatment with the insecticidal protein Vip3Aa. With this approach, the goal of our study was to evaluate the changes in gene expression levels caused by treatment with sublethal doses of Vip3Aa (causing 99% growth inhibition) at 8 and 24 h after feeding. Results indicated that the toxin provoked a wide transcriptional response, with 19% of the microarray unigenes responding significantly to treatment. The number of up- and down-regulated unigenes was very similar. The number of genes whose expression was regulated at 8 h was similar to the number of genes whose expression was regulated after 24 h of treatment. The up-regulated sequences were enriched for genes involved in innate immune response and in pathogen response such as antimicrobial peptides (AMPs) and repat genes. The down-regulated sequences were mainly unigenes with homology to genes involved in metabolism. Genes related to the mode of action of Bt Cry proteins were found, in general, to be slightly overexpressed. The present study is the first genome-wide analysis of the response of lepidopteran insects to Vip3Aa intoxication. An insight into the molecular mechanisms and components related to Vip intoxication will allow designing of more effective management strategies for pest control.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins/toxicity , Spodoptera/drug effects , Spodoptera/genetics , Transcriptome/drug effects , Animals , Bacillus thuringiensis/physiology , Larva/drug effects , Larva/genetics , Oligonucleotide Array Sequence Analysis , Pest Control, Biological
20.
Insect Biochem Mol Biol ; 43(10): 924-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23933214

ABSTRACT

Aminopeptidase N (APN) isoforms from Lepidoptera are known for their involvement in the mode of action of insecticidal Cry proteins from Bacillus thuringiensis. These enzymes belong to a protein family with at least eight different members that are expressed simultaneously in the midgut of lepidopteran larvae. Here, we focus on the characterization of the APNs from Ostrinia nubilalis (OnAPNs) to identify potential Cry receptors. We expressed OnAPNs in insect cells using a baculovirus system and analyzed their enzymatic activity by probing substrate specificity and inhibitor susceptibility. The interaction with Cry1Ab and Cry1Fa proteins (both found in transgenic insect-resistant maize) was evaluated by ligand blot assays and immunocytochemistry. Ligand blots of brush border membrane proteins showed that both Cry proteins bound mainly to a 150 kDa-band, in which OnAPNs were greatly represented. Binding analysis of Cry proteins to the cell-expressed OnAPNs showed that OnAPN1 interacted with both Cry1Ab and Cry1Fa, whereas OnAPN3a and OnAPN8 only bound to Cry1Fa. Two isoforms, OnAPN2 and OnAPN3b, did not interact with any of these two proteins. This work provides the first evidence of a differential role of OnAPN isoforms in the mode of action of Cry proteins in O. nubilalis.


Subject(s)
Bacterial Proteins/metabolism , CD13 Antigens/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Moths/enzymology , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/toxicity , Endotoxins/toxicity , Gastrointestinal Tract/enzymology , Hemolysin Proteins/toxicity , Isoenzymes/metabolism , Moths/drug effects , Protein Binding , Sf9 Cells , Substrate Specificity , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...