Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 169(3): 160-70, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17644080

ABSTRACT

An important antitumour effect of SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) has been shown. We now report the effects of this mesoionic compound on mitochondrial metabolism. SYD-1 (1.5 micromol mg(-1) protein) dose-dependently inhibited the respiratory rate by 65% and 40% in state 3 using sodium glutamate and succinate, respectively, as substrates. Phosphorylation efficiency was depressed by SYD-1, as evidenced by stimulation of the state 4 respiratory rate, which was more accentuated with glutamate ( approximately 180%) than with succinate ( approximately 40%), with 1.5 micromol mg(-1) protein of SYD-1. As a consequence of the effects on states 3 and 4, the RCC and ADP/O ratios were lowered by SYD-1 using both substrates, although this effect was stronger with glutamate. The formation of membrane electrical potential was inhibited by approximately 50% (1.5 micromol SYD-1mg(-1) protein). SYD-1 interfered with the permeability of the inner mitochondrial membrane, as demonstrated by assays of mitochondrial swelling in the presence of sodium acetate and valinomycin +K(+). SYD-1 (1.5 micromol mg(-1) protein) inhibited glutamate completely and succinate energized-mitochondrial swelling by 80% in preparations containing sodium acetate. The swelling of de-energized mitochondria induced by K(+) and valinomycin was inhibited by 20% at all concentrations of SYD-1. An analysis of the segments of the respiratory chain suggested that the SYD-1 inhibition site goes beyond the complex I and includes complexes III and IV. Glutamate dehydrogenase was inhibited by 20% with SYD-1 (1.5 micromol mg(-1) protein). The hydrolytic activity of complex F(1)F(o) ATPase in intact mitochondria was greatly increased ( approximately 450%) in the presence of SYD-1. Our results show that SYD-1 depresses the efficiency of electron transport and oxidative phosphorylation, suggesting that these effects may be involved in its antitumoural effect.


Subject(s)
Mitochondria, Liver/drug effects , Oxadiazoles/pharmacology , Sydnones/pharmacology , Adenosine Triphosphatases/metabolism , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Respiration/drug effects , Ions/chemistry , Male , Membrane Potentials/drug effects , Mitochondria, Liver/enzymology , Mitochondrial Swelling/drug effects , Molecular Structure , Oligomycins/pharmacology , Oxadiazoles/chemical synthesis , Rats , Rats, Wistar , Sydnones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...