Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 165(1): 123-134, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36322468

ABSTRACT

In brief: Ghrelin signals to the hypothalamus inhibit reproduction during times of food scarcity. In this study, we demonstrate that ghrelin impairs sperm quality in male mice. Abstract: Ghrelin (GHRL) is an orexigenic peptide that has been investigated as one of the signals responsible for the reproductive performance of mammals under fluctuating metabolic conditions. Central GHRL administration impairs spermatogenesis in mice by regulating the hypothalamic-pituitary-gonadal axis function. In the present study, the hypothalamus role as a mediator of GHRL effects on sperm fertilizing capacity and male sexual behavior was evaluated. After 42 days of hypothalamic GHRL infusion or artificial cerebrospinal fluid, in vitro and in vivo sperm fertilizing capacity, testicular α-tubulin, speriolin gene expression and spermatic α-tubulin protein were evaluated. Hypothalamic expression of genes Kiss1, Gpr54 and Gnrh was also studied. The second group of animals was infused with one time only GHRL or artificial cerebrospinal fluid into the hypothalamus to evaluate the effects on sexual behavior. Results demonstrated that chronic GHRL administration to male mice significantly increased the percentages of pre-implantation embryo loss and the number of post-implantation embryo loss. In relation to the gene expression, our results show a relative decrease of Kiss1, Gpr54 and Spatc1. Although no significant differences were observed in the quantitative expression of α-tubulin protein, qualitative changes in its expression pattern were observed. In addition, a dual effect on sexual behavior was observed: 40% of the treated animals showed a significant reduction in the number of mounts and intromissions, while a 60% showed a significant decrease in ejaculation latency vs control animals. In conclusion, our results provide evidence that central GHRL administration possibly induces failure in embryo development and/or implantation in the females mated with treated males, possibly because of a negative effect in the α-tubulin pattern.


Subject(s)
Abortion, Spontaneous , Tubulin , Male , Mice , Animals , Female , Humans , Pregnancy , Embryo Loss , Semen , Sexual Behavior , Spermatozoa , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...