Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 70(4): 410-424, 2020 04.
Article in English | MEDLINE | ID: mdl-32043942

ABSTRACT

As part of the global effort to quantify and manage anthropogenic greenhouse gas emissions, there is considerable interest in quantifying methane emissions in municipal solid waste landfills. A variety of analytical and experimental methods are currently in use for this task. In this paper, an optimization-based estimation method is employed to assess fugitive landfill methane emissions. The method combines inverse plume modeling with ambient air methane concentration measurements. Three different measurement approaches are tested and compared. The method is combined with surface emission monitoring (SEM), above ground drone emission monitoring (DEM), and downwind plume emission monitoring (DWPEM). The methodology is first trialed and validated using synthetic datasets in a hand-generated case study. A field study is also presented where SEM, DEM and DWPEM are tested and compared. Methane flux during two-days measurement campaign was estimated to be between 228 and 350 g/s depending on the type of measurements used. Compared to SEM, using unmanned aerial systems (UAS) allows for a rapid and comprehensive coverage of the site. However, as showed through this work, advancement of DEM-based methane sampling is governed by the advances that could be made in UAS-compatible measurement instrumentations. Downwind plume emission monitoring led to a smaller estimated flux compared with SEM and DEM without information about positions of major leak points in the landfill. Even though, the method is simple and rapid for landfill methane screening. Finally, the optimization-based methodology originally developed for SEM, shows promising results when it is combined with the drone-based collected data and downwind concentration measurements. The studied cases also discovered the limitations of the studied sampling strategies which is exploited to identify improvement strategies and recommendations for a more efficient assessment of fugitive landfill methane emissions.Implications: Fugitive landfill methane emission estimation is tackled in the present study. An optimization-based method combined with inverse plume modeling is employed to treat data from surface emission monitoring, drone-based emission monitoring and downwind plume emission monitoring. The study helped revealing the advantages and the limitations of the studied sampling strategies. Recommendations for an efficient assessment of landfill methane emissions are formulated. The method trialed in this study for fugitive landfill methane emission could also be appropriate for rapid screening of analogous greenhouse gas emission hotspots.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Methane/analysis , Waste Disposal Facilities , Models, Theoretical
2.
Waste Manag ; 72: 313-328, 2018 Feb.
Article in English | MEDLINE | ID: mdl-27887773

ABSTRACT

As municipal solid waste (MSW) landfills can generate significant amounts of methane, there is considerable interest in quantifying fugitive methane emissions at such facilities. A variety of methods exist for the estimation of methane emissions from landfills. These methods are either based on analytical emission models or on measurements. This paper presents a method to estimate methane emissions using ambient air methane measurements obtained on the surface of a landfill. Genetic Algorithms based optimization combined with the standard Gaussian dispersion model is employed to identify locations as well as emission rates of potential emission sources throughout a municipal solid waste landfill. Four case studies are employed in order to evaluate the performance of the proposed methodology. It is shown that the proposed approach enables estimation of landfill methane emissions and localization of major emission hotspots in the studied landfills. The proposed source-locating-scheme could be seen as a cost effective method assisting landfill operators to reasonably estimate and locate major methane emissions.


Subject(s)
Methane/analysis , Waste Disposal Facilities , Air Pollutants , Algorithms , Environmental Monitoring , Refuse Disposal , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...