Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447529

ABSTRACT

A designer of sustainable biocomposite structures and natural ropes needs to have a high confidence interval (95% CI) for mechanical characteristics data of performance materials, yet qualities for plant-based fibers are very diverse. A comprehensive study of the elements that enhance the performance of biocomposites or sustainable ropes created from vegetable fibers is necessary. The current study included five groups with varying numbers (N) of tests of 20, 40, 60, 80, and 100 on the mechanical characteristics at room temperatures. The purpose of this study was to determine how changing N affects the mechanical properties of sisal yarn. These properties include its strength, Young's modulus, and deformation at rupture. A significance testing program including more than 100 tests was performed. Owing to the heterogeneity of the plant yarn, each group received more than 20 samples at a gauge length (GL) of 100 mm. The tensile strength characteristics of sisal yarns produced a wide range of findings, as is common for natural fibers, necessitating a statistical analysis. Its dispersion was explored and measured using the statistical methods. The Weibull distribution with two parameters and a prediction model with a 95% confidence level for maximum likelihood (ML) and least squares (LS) were used to investigate and quantify its dispersion.

2.
Polymers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447555

ABSTRACT

In this research work, we aim to study the effect of the incorporation of vegetable fiber reinforcement on the thermo-mechanical and dynamic properties of a composite formed by a polymeric matrix reinforced with cellulosic fibers with the various Washingtonia fiber (WF) loadings (0%, 10%, 20%, and 30% by wt%) as reinforced material in high-density polyethylene (HDPE) Biocomposites to evaluate the optimum fiber loading of biocomposites. In addition, several characterization techniques (i.e., thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermal mechanical analysis (TMA)) were used to better understand the characteristics of the new composites prepared. With these techniques, we managed to verify the rigidity and thermal stability of the composites so elaborated, as well as the success of the polymer and the structural homogeneity of the obtained biocomposites. Hence, the biocomposite with the best ratio (HDPE/20WF) showed a loss modulus (E″) of 224 MPa, a storage modulus (E') of 2079 MPa, and a damping factor (Tanδ) of 0.270 to the glass transition (Tg) of 145 °C. In addition, thermomechanical analysis (TMA) of the biocomposite samples exhibited marginally higher Ts compared to the HDPE matrix. The best results were recorded with biocomposites with 20% WF, which showed better thermal properties. This composite material can be used as insulation in construction materials (buildings, false ceilings, walls, etc.).

SELECTION OF CITATIONS
SEARCH DETAIL
...