Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 42(16): e113348, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37409633

ABSTRACT

UBR5 is a nuclear E3 ligase that ubiquitinates a vast range of substrates for proteasomal degradation. This HECT domain-containing ubiquitin ligase has recently been identified as an important regulator of oncogenes, e.g., MYC, but little is known about its structure or mechanisms of substrate engagement and ubiquitination. Here, we present the cryo-EM structure of human UBR5, revealing an α-solenoid scaffold with numerous protein-protein interacting motifs, assembled into an antiparallel dimer that adopts further oligomeric states. Using cryo-EM processing tools, we observe the dynamic nature of the UBR5 catalytic domain, which we postulate is important for its enzymatic activity. We characterise the proteasomal nuclear import factor AKIRIN2 as an interacting protein and propose UBR5 as an efficient ubiquitin chain elongator. This preference for ubiquitinated substrates and several distinct domains for protein-protein interactions may explain how UBR5 is linked to several different signalling pathways and cancers. Together, our data expand on the limited knowledge of the structure and function of HECT E3 ligases.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Humans , Ubiquitin-Protein Ligases/metabolism , Cryoelectron Microscopy , Ubiquitination , Amino Acid Motifs , Ubiquitin/metabolism
2.
Nature ; 613(7945): 712-720, 2023 01.
Article in English | MEDLINE | ID: mdl-36653451

ABSTRACT

Ribosomes are produced in large quantities during oogenesis and are stored in the egg. However, the egg and early embryo are translationally repressed1-4. Here, using mass spectrometry and cryo-electron microscopy analyses of ribosomes isolated from zebrafish (Danio rerio) and Xenopus laevis eggs and embryos, we provide molecular evidence that ribosomes transition from a dormant state to an active state during the first hours of embryogenesis. Dormant ribosomes are associated with four conserved factors that form two modules, consisting of Habp4-eEF2 and death associated protein 1b (Dap1b) or Dap in complex with eIF5a. Both modules occupy functionally important sites and act together to stabilize ribosomes and repress translation. Dap1b (also known as Dapl1 in mammals) is a newly discovered translational inhibitor that stably inserts into the polypeptide exit tunnel. Addition of recombinant zebrafish Dap1b protein is sufficient to block translation and reconstitute the dormant egg ribosome state in a mammalian translation extract in vitro. Thus, a developmentally programmed, conserved ribosome state has a key role in ribosome storage and translational repression in the egg.


Subject(s)
Conserved Sequence , Evolution, Molecular , Ovum , Protein Biosynthesis , Ribosomes , Xenopus Proteins , Zebrafish Proteins , Animals , Cryoelectron Microscopy/methods , Peptides/metabolism , Ribosomes/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Mass Spectrometry , Xenopus laevis/embryology , Ovum/metabolism , Embryonic Structures , Embryonic Development , Female , Eukaryotic Translation Initiation Factor 5A
3.
Plant Commun ; 3(3): 100310, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35576154

ABSTRACT

Targeted proteolysis is a hallmark of life. It is especially important in long-lived cells that can be found in higher eukaryotes, like plants. This task is mainly fulfilled by the ubiquitin-proteasome system. Thus, proteolysis by the 26S proteasome is vital to development, immunity, and cell division. Although the yeast and animal proteasomes are well characterized, there is only limited information on the plant proteasome. We determined the first plant 26S proteasome structure from Spinacia oleracea by single-particle electron cryogenic microscopy at an overall resolution of 3.3 Å. We found an almost identical overall architecture of the spinach proteasome compared with the known structures from mammals and yeast. Nevertheless, we noticed a structural difference in the proteolytic active ß1 subunit. Furthermore, we uncovered an unseen compression state by characterizing the proteasome's conformational landscape. We suspect that this new conformation of the 20S core protease, in correlation with a partial opening of the unoccupied gate, may contribute to peptide release after proteolysis. Our data provide a structural basis for the plant proteasome, which is crucial for further studies.


Subject(s)
Cryoelectron Microscopy , Proteasome Endopeptidase Complex , Cryoelectron Microscopy/methods , Plant Proteins/metabolism , Plant Proteins/ultrastructure , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/ultrastructure , Ubiquitin
4.
Nat Commun ; 11(1): 1772, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286308

ABSTRACT

Sample purity is central to in vitro studies of protein function and regulation, and to the efficiency and success of structural studies using techniques such as x-ray crystallography and cryo-electron microscopy (cryo-EM). Here, we show that mass photometry (MP) can accurately characterize the heterogeneity of a sample using minimal material with high resolution within a matter of minutes. To benchmark our approach, we use negative stain electron microscopy (nsEM), a popular method for EM sample screening. We include typical workflows developed for structure determination that involve multi-step purification of a multi-subunit ubiquitin ligase and chemical cross-linking steps. When assessing the integrity and stability of large molecular complexes such as the proteasome, we detect and quantify assemblies invisible to nsEM. Our results illustrate the unique advantages of MP over current methods for rapid sample characterization, prioritization and workflow optimization.


Subject(s)
Cryoelectron Microscopy/methods , Mass Spectrometry/methods , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Cattle , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Escherichia coli/ultrastructure , Proteasome Endopeptidase Complex/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...