Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203774

ABSTRACT

Baculoviruses are viral pathogens that infect different species of Lepidoptera, Diptera, and Hymenoptera, with a global distribution. Due to their biological characteristics and the biotechnological applications derived from these entities, the Baculoviridae family is an important subject of study and manipulation in the natural sciences. With the advent of RNA interference mechanisms, the presence of baculoviral genes that do not code for proteins but instead generate transcripts similar to microRNAs (miRNAs) has been described. These miRNAs are functionally associated with the regulation of gene expression, both in viral and host sequences. This article provides a comprehensive review of miRNA biogenesis, function, and characterization in general, with a specific focus on those identified in baculoviruses. Furthermore, it delves into the specific roles of baculoviral miRNAs in regulating viral and host genes and presents structural and thermodynamic stability studies that are useful for detecting shared characteristics with predictive utility. This review aims to expand our understanding of the baculoviral miRNAome, contributing to improvements in the production of baculovirus-based biopesticides, management of resistance phenomena in pests, enhancement of recombinant protein production systems, and development of diverse and improved BacMam vectors to meet biomedical demands.


Subject(s)
MicroRNAs , MicroRNAs/genetics , Baculoviridae/genetics , RNA Interference , Biological Control Agents , Biotechnology
2.
Viruses ; 15(5)2023 04 29.
Article in English | MEDLINE | ID: mdl-37243176

ABSTRACT

Baculoviruses are entomopathogens that carry large, double-stranded circular DNA genomes and infect insect larvae of Lepidoptera, Hymenoptera and Diptera, with applications in the biological control of agricultural pests, in the production of recombinant proteins and as viral vectors for various purposes in mammals. These viruses have a variable genetic composition that differs between species, with some sequences shared by all known members, and others that are lineage-specific or unique to isolates. Based on the analysis of nearly 300 sequenced genomes, a thorough bioinformatic investigation was conducted on all the baculoviral protein coding sequences, characterizing their orthology and phylogeny. This analysis confirmed the 38 protein coding sequences currently considered as core genes, while also identifying novel coding sequences as candidates to join this set. Accordingly, homology was found among all the major occlusion body proteins, thus proposing that the polyhedrin, granulin and CUN085 genes be considered as the 39th core gene of Baculoviridae.


Subject(s)
Baculoviridae , Lepidoptera , Animals , Baculoviridae/genetics , Viral Proteins/genetics , Viral Structural Proteins , Insecta , Mammals
3.
Rev. colomb. biotecnol ; 24(2): 59-67, jul.-dic. 2022. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1423775

ABSTRACT

RESUMEN El ARN de interferencia (ARNi) es un mecanismo evolutivamente conservado en la mayoría de las células eucariotas que permite silenciar genes mediante la degradación de ARN mensajero (ARNm) y la supresión de la síntesis de proteínas. En plantas, las moléculas de ARNi están involucradas en mecanismos de defensa contra patógenos y transposones, en la respuesta adaptativa al estrés, y en la expresión de genes relacionados con su crecimiento. El ARNi se considera una herramienta biotecnológica eficaz para silenciar la expresión de genes de microorganismos fitopatógenos, esto permite el diseño de bioplaguicidas ambientalmente seguros con una afinidad y selectividad, en muchos casos superior a la de los plaguicidas químicos. En esta revisión se señalan los últimos avances en la aplicación del ARNi en el contexto agrícola y su efectividad en el control biológico de fitopatógenos e insectos plaga. Asimismo, se presentan diversos ensayos experimentales cuyos resultados pueden ser la base para futuros bioproductos, además de algunos ejemplos disponibles en el mercado. Por último, se abordan aspectos de bioseguridad y consideraciones regulatorias necesarias para la aceptación y uso de esta tecnología a nivel global.


ABSTRACT RNA interference (RNAi) is an evolutionarily conserved mechanism in most eukaryotic cells that allows genes to be silenced by degradation of messenger RNA (mRNA) and suppression of protein synthesis. In plants, RNAi molecules are involved in defense mechanisms against pathogens and transposons, in the adaptive response to stress, and in the expression of genes related to their growth. RNAi is an effective biotechnological tool to silence the expression of specific genes which are essential for the survival of phytopathogenic microorganisms, thus allowing the design of environmentally safe biopesticides with affinity and selectivity, in many cases greater than chemical pesticides. This review describes the latest advances in the application of RNAi in the agricultural context and its effectiveness in the biological control of phytopathogens and pest insects. Likewise, various experimental trials are presented, the results of which may be the basis for future bioproducts, as well as some examples available on the market. Finally, biosafety aspects and regulatory considerations necessary for the acceptance and use of this technology at a global level are presented.

4.
Comput Struct Biotechnol J ; 20: 3779-3782, 2022.
Article in English | MEDLINE | ID: mdl-35891794

ABSTRACT

Angiogenic gene overexpression has been the main strategy in numerous vascular regenerative gene therapy projects. However, most have failed in clinical trials. CRISPRa technology enhances gene overexpression levels based on the identification of sgRNAs with maximum efficiency and safety. CRISPick and CHOP CHOP are the most widely used web tools for the prediction of sgRNAs. The objective of our study was to analyze the performance of both platforms for the sgRNA design to angiogenic genes (VEGFA, KDR, EPO, HIF-1A, HGF, FGF, PGF, FGF1) involving different human reference genomes (GRCH 37 and GRCH 38). The top 20 ranked sgRNAs proposed by the two tools were analyzed in different aspects. No significant differences were found on the DNA curvature associated with the sgRNA binding sites but the sgRNA predicted on-target efficiency was significantly greater when CRISPick was used. Moreover, the mean ranking variation was greater for the same platform in EPO, EGF, HIF-1A, PGF and HGF, whereas it did not reach statistical significance in KDR, FGF-1 and VEGFA. The rearrangement analysis of the ranking positions was also different between platforms. CRISPick proved to be more accurate in establishing the best sgRNAs in relation to a more complete genome, whereas CHOP CHOP showed a narrower classification reordering.

5.
Viruses ; 13(12)2021 12 02.
Article in English | MEDLINE | ID: mdl-34960685

ABSTRACT

Baculoviruses are insect pathogens that are characterized by assembling the viral dsDNA into two different enveloped virions during an infective cycle: occluded virions (ODVs; immersed in a protein matrix known as occlusion body) and budded virions (BVs). ODVs are responsible for the primary infection in midgut cells of susceptible larvae thanks to the per os infectivity factor (PIF) complex, composed of at least nine essential viral proteins. Among them, P74 is a crucial factor whose activity has been identified as virus-specific. In this work, the p74 gene from AcMNPV was pseudogenized using CRISPR/Cas9 technology and then complemented with wild-type alleles from SeMNPV and HearSNPV species, as well as chimeras combining the P74 amino and carboxyl domains. The results on Spodoptera exigua and Rachiplusia nu larvae showed that an amino terminal sector of P74 (lacking two potential transmembrane regions but possessing a putative nuclear export signal) is sufficient to restore the virus infectivity whether alone or fused to the P74 transmembrane regions of the other evaluated viral species. These results provide novel information about the functional role of P74 and delimit the region on which mutagenesis could be applied to enhance viral activity and, thus, produce better biopesticides.


Subject(s)
Nucleopolyhedroviruses/chemistry , Nucleopolyhedroviruses/physiology , Spodoptera/virology , Viral Envelope Proteins/chemistry , Amino Acid Motifs , Animals , CRISPR-Cas Systems , Genetic Complementation Test , Larva/virology , Moths/virology , Nucleopolyhedroviruses/genetics , Phylogeny , Protein Domains , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sf9 Cells , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
6.
Viruses ; 13(12)2021 12 15.
Article in English | MEDLINE | ID: mdl-34960789

ABSTRACT

Spodoptera ornithogalli (Guenée) (Lepidoptera: Noctuidae) is an important pest in different crops of economic relevance in America. For its control, strategies that include chemicals are usually used; so, the description of entomopathogens would be very useful for the formulation of biopesticides. In this regard, two different baculoviruses affecting S. ornithogalli were isolated in Colombia, with one of them being an NPV and the other a GV. Ultrastructural, molecular, and biological characterization showed that both isolates possess the 38 core genes and are novel species in Baculoviridae, named as Spodoptera ornithogalli nucleopolyhedrovirus (SporNPV) and Spodoptera ornithogalli granulovirus (SporGV). The bioassays carried out in larvae of S. ornithogalli and S. frugiperda showed infectivity in both hosts but being higher in the first. In addition, it was observed that SporGV potentiates the insecticidal action of SporNPV (maximum value in ratio 2.5:97.5). Both viruses are individually infective but coexist in nature, producing mixed infections with a synergistic effect that improves the performance of the NPV and enables the transmission of the GV, which presents a slowly killing phenotype.


Subject(s)
Baculoviridae , Coinfection/virology , Larva/virology , Spodoptera/virology , Animals , Baculoviridae/genetics , Biological Control Agents , Colombia , Disease Models, Animal , Granulovirus/classification , Granulovirus/genetics , Insecticides , Moths/virology , Nucleopolyhedroviruses , Pest Control, Biological , Phylogeny
7.
Appl Microbiol Biotechnol ; 105(21-22): 8195-8226, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34618205

ABSTRACT

Baculoviruses are insect pathogens widely used as biotechnological tools in different fields of life sciences and technologies. The particular biology of these entities (biosafety viruses 1; large circular double-stranded DNA genomes, infective per se; generally of narrow host range on insect larvae; many of the latter being pests in agriculture) and the availability of molecular-biology procedures (e.g., genetic engineering to edit their genomes) and cellular resources (availability of cell lines that grow under in vitro culture conditions) have enabled the application of baculoviruses as active ingredients in pest control, as systems for the expression of recombinant proteins (Baculovirus Expression Vector Systems-BEVS) and as viral vectors for gene delivery in mammals or to display antigenic proteins (Baculoviruses applied on mammals-BacMam). Accordingly, BEVS and BacMam technologies have been introduced in academia because of their availability as commercial systems and ease of use and have also reached the human pharmaceutical industry, as incomparable tools in the development of biological products such as diagnostic kits, vaccines, protein therapies, and-though still in the conceptual stage involving animal models-gene therapies. Among all the baculovirus species, the Autographa californica multiple nucleopolyhedrovirus has been the most highly exploited in the above utilities for the human-biotechnology field. This review highlights the main achievements (in their different stages of development) of the use of BEVS and BacMam technologies for the generation of products for infectious and noninfectious human diseases. KEY POINTS: • Baculoviruses can assist as biotechnological tools in human health problems. • Vaccines and diagnosis reagents produced in the baculovirus platform are described. • The use of recombinant baculovirus for gene therapy-based treatment is reviewed.


Subject(s)
Baculoviridae , Genetic Vectors , Animals , Baculoviridae/genetics , Cell Line , Humans , Insecta , Recombinant Proteins/genetics
8.
Curr Gene Ther ; 21(2): 177-189, 2021.
Article in English | MEDLINE | ID: mdl-33334288

ABSTRACT

BACKGROUND: Baculoviruses are insect pathogens with important biotechnological applications that transcend their use as biological controllers of agricultural pests. One species, Autographa californica multiple nucleopolhyedrovirus (AcMNPV), has been extensively exploited as a molecular platform to produce recombinant proteins and as a delivery vector for genes in mammals because it can transduce a wide range of mammalian cells and tissues without replicating or producing progeny. METHOD: To investigate if the budded virions of Anticarsia gemmatalis multiple nucleopolhyedrovirus (AgMNPV) species has the same ability, the viral genome was modified by homologous recombination into susceptible insect cells to integrate reporter genes and then it was evaluated on mammalian cell lines in a comparative form with respect to equivalent viruses derived from AcMNPV. Besides, the replicative capacity of AgMNPV´s virions in mammals was determined. RESULTS: The experiments carried out showed that the recombinant variant of AgMNPV transduces and support the expression of delivered genes but not replicates in mammalian cells. CONCLUSION: Consequently, this insect pathogen is proposed as an alternative to non-infectious viruses in humans to explore new approaches in gene therapy and other applications based on the use of mammalian cells.


Subject(s)
Genetic Therapy , Genetic Vectors/genetics , Nucleopolyhedroviruses/genetics , Recombinant Proteins/genetics , Baculoviridae/genetics , Gene Transfer Techniques , Genome, Viral/genetics , Homologous Recombination/genetics , Humans , Virion/genetics
9.
Viruses ; 12(12)2020 12 06.
Article in English | MEDLINE | ID: mdl-33291215

ABSTRACT

Baculoviruses are a group of insect viruses with large circular dsDNA genomes exploited in numerous biotechnological applications, such as the biological control of agricultural pests, the expression of recombinant proteins or the gene delivery of therapeutic sequences in mammals, among others. Their genomes encode between 80 and 200 proteins, of which 38 are shared by all reported species. Thanks to multi-omic studies, there is remarkable information about the baculoviral proteome and the temporality in the virus gene expression. This allows some functional elements of the genome to be very well described, such as promoters and open reading frames. However, less information is available about the transcription termination signals and, consequently, there are still imprecisions about what are the limits of the transcriptional units present in the baculovirus genomes and how is the processing of the 3' end of viral mRNA. Regarding to this, in this review we provide an update about the characteristics of DNA signals involved in this process and we contribute to their correct prediction through an exhaustive analysis that involves bibliography information, data mining, RNA structure and a comprehensive study of the core gene 3' ends from 180 baculovirus genomes.


Subject(s)
Baculoviridae/genetics , Gene Expression Regulation, Viral , Insect Viruses/genetics , Polyadenylation , RNA, Messenger/genetics , Transcription, Genetic , 3' Untranslated Regions , Animals , Baculoviridae/metabolism , Binding Sites , Genome, Viral , Genomics/methods , Protein Binding , RNA Processing, Post-Transcriptional , Regulatory Sequences, Ribonucleic Acid , Virus Replication
10.
Cytotherapy ; 22(10): 563-572, 2020 10.
Article in English | MEDLINE | ID: mdl-32723595

ABSTRACT

BACKGROUND AIMS: Peripheral arterial disease (PAD) is a progressive, disabling ailment for which no effective treatment exists. Gene therapy-mediated neovascularization has emerged as a potentially useful strategy. We tested the angiogenic and arteriogenic efficacy and safety of a baculovirus (BV) encoding mutant, oxygen-resistant hypoxia-inducible factor 1-alpha (mHIF-1α), in rabbits with PAD. METHODS: After assessing the transfection efficiency of the BV.mHIF-1α vector and its tubulogenesis potential in vitro, we randomized rabbits with experimental PAD to receive 1 × 109 copies of BV.mHIF-1α or BV.null (n = 6 per group) 7 days after surgery. Two weeks post-treatment, collateralization (digital angiography) and capillary and arteriolar densities (immunohistochemistry) were measured in the posterior limbs. Ischemic damage was evaluated in adductor and gastrocnemius muscle samples. Tracking of viral DNA in injected zones and remote tissues at different time points was performed in additional rabbits using a BV encoding GFP. RESULTS: Angiographically visible collaterals were more numerous in BV.mHIF-1α-treated rabbits (8.12 ± 0.42 vs 6.13 ± 1.15 collaterals/cm2, P < 0.05). The same occurred with arteriolar (27.9 ± 7.0 vs 15.3 ± 4.0 arterioles/mm2) and capillary (341.8 ± 109.9 vs 208.8 ± 87.7 capillaries/mm2, P < 0.05) densities. BV.mHIF-1α-treated rabbits displayed less ischemic muscle damage than BV.null-treated animals. Viral DNA and GFP mRNA were detectable only at 3 and 7 days after injection in hind limbs. Neither the virus nor GFP mRNA was detected in remote tissues. CONCLUSIONS: In rabbits with PAD, BV.mHIF-1α induced neovascularization and reduced ischemic damage, exhibiting a good safety profile at 14 days post-treatment. Complementary studies to evaluate its potential usefulness in the clinic are needed.


Subject(s)
Baculoviridae/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Ischemia/therapy , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Neovascularization, Physiologic , Peripheral Arterial Disease/therapy , Animals , Arterioles , Disease Models, Animal , Gene Expression , Genetic Therapy , Hindlimb/blood supply , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia/pathology , Microvessels/pathology , Peripheral Arterial Disease/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rabbits , Transfection
11.
Am J Physiol Heart Circ Physiol ; 318(4): H994-H1007, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32167779

ABSTRACT

The adult mammalian cardiomyocyte has a very limited capacity to reenter the cell cycle and advance into mitosis. Therefore, diseases characterized by lost contractile tissue usually evolve into myocardial remodeling and heart failure. Analyzing the cardiac transcriptome at different developmental stages in a large mammal closer to the human than laboratory rodents may serve to disclose positive and negative cardiomyocyte cell cycle regulators potentially targetable to induce cardiac regeneration in the clinical setting. Thus we aimed at characterizing the transcriptomic profiles of the early fetal, late fetal, and adult sheep heart by employing RNA-seq technique and bioinformatic analysis to detect protein-encoding genes that in some of the stages were turned off, turned on, or differentially expressed. Genes earlier proposed as positive cell cycle regulators such as cyclin A, cdk2, meis2, meis3, and PCNA showed higher expression in fetal hearts and lower in AH, as expected. In contrast, genes previously proposed as cell cycle inhibitors, such as meis1, p16, and sav1, tended to be higher in fetal than in adult hearts, suggesting that these genes are involved in cell processes other than cell cycle regulation. Additionally, we described Gene Ontology (GO) enrichment of different sets of genes. GO analysis revealed that differentially expressed gene sets were mainly associated with metabolic and cellular processes. The cell cycle-related genes fam64a, cdc20, and cdk1, and the metabolism-related genes pitx and adipoq showed strong differential expression between fetal and adult hearts, thus being potent candidates to be targeted in human cardiac regeneration strategies.NEW & NOTEWORTHY We characterized the transcriptomic profiles of the fetal and adult sheep hearts employing RNAseq technique and bioinformatic analyses to provide sets of transcripts whose variation in expression level may link them to a specific role in cell cycle regulation. It is important to remark that this study was performed in a large mammal closer to humans than laboratory rodents. In consequence, the results can be used for further translational studies in cardiac regeneration.


Subject(s)
Gene Expression Regulation, Developmental , Heart/physiology , Myocardium/metabolism , Regeneration , Transcriptome , Animals , Cyclin A/genetics , Cyclin A/metabolism , Female , Heart/growth & development , Male , Sheep , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Viruses ; 11(7)2019 07 15.
Article in English | MEDLINE | ID: mdl-31311127

ABSTRACT

To understand the mechanism of replication used by baculoviruses, it is essential to describe all the factors involved, including virus and host proteins and the sequences where DNA synthesis starts. A lot of work on this topic has been done, but there is still confusion in defining what sequence/s act in such functions, and the mechanism of replication is not very well understood. In this work, we performed an AgMNPV replication kinetics into the susceptible UFL-Ag-286 cells to estimate viral genome synthesis rates. We found that the viral DNA exponentially increases in two different phases that are temporally separated by an interval of 5 h, probably suggesting the occurrence of two different mechanisms of replication. Then, we prepared a plasmid library containing virus fragments (0.5-2 kbp), which were transfected and infected with AgMNPV in UFL-Ag-286 cells. We identified 12 virus fragments which acted as origins of replication (ORI). Those fragments are in close proximity to core genes. This association to the core genome would ensure vertical transmission of ORIs. We also predict the presence of common structures on those fragments that probably recruit the replication machinery, a structure also present in previously reported ORIs in baculoviruses.


Subject(s)
DNA Replication , DNA, Viral/genetics , Genome, Viral , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/physiology , Animals , Cell Line , Kinetics , Moths/virology , Replication Origin , Virus Replication/genetics
13.
Curr Drug Targets ; 20(2): 241-254, 2019.
Article in English | MEDLINE | ID: mdl-30068271

ABSTRACT

Adult mammalian cardiomyocytes (CMs) exhibit limited proliferative capacity, as cell cycle activity leads to an increase in DNA content, but mitosis and cytokinesis are infrequent. This makes the heart highly inefficient in replacing with neoformed cardiomyocytes lost contractile cells as occurs in diseases such as myocardial infarction and dilated cardiomyopathy. Regenerative therapies based on the implant of stem cells of diverse origin do not warrant engraftment and electromechanical connection of the new cells with the resident ones, a fundamental condition to restore the physiology of the cardiac syncytium. Consequently, there is a growing interest in identifying factors playing relevant roles in the regulation of the CM cell cycle to be targeted in order to induce the resident cardiomyocytes to divide into daughter cells and thus achieve myocardial regeneration with preservation of physiologic syncytial performance. Despite the scientific progress achieved over the last decades, many questions remain unanswered, including how cardiomyocyte proliferation is regulated during heart development in gestation and neonatal life. This can reveal unknown cell cycle regulation mechanisms and molecules that may be manipulated to achieve cardiac self-regeneration. We hereby revise updated data on CM cell cycle regulation, participating molecules and pathways recently linked with the cell cycle, as well as experimental therapies involving them.


Subject(s)
Myocytes, Cardiac/physiology , Regeneration , Animals , Cell Cycle , Cell Proliferation , Gene Regulatory Networks , Humans
14.
PLoS One ; 12(9): e0184053, 2017.
Article in English | MEDLINE | ID: mdl-28873431

ABSTRACT

Diatraea spp. (Lepidoptera: Crambidae) are a group of insects that are agriculture pests in many economically relevant crops such as sugarcane, sorghum, corn and rice. Recognized species for this genus respond differentially to natural enemies used in their biological control, emphasizing the importance of species in a regional approach. Currently, identification is based on the male genitalia. However, the availability of specimens collected from field and subjectivity based on the character recognition can seriously hamper species identification, and therefore result in inadequate pest management. To overcome this, individuals of Diatraea spp. preliminarily classified male genitalia and obtained from reared conditions and the field (both derived from natural populations occurring in Colombia) were analyzed using genitalic morphometry and molecular biology specifically using a fragment of the cytochrome oxidase subunit II (CO II) mitochondrial gene. Although morphometric analysis did not show any overriding results regarding genitalia morphology, the bioinformatics analyses of CO II sequences resulted in an adequate classification of the individuals within the recognized species. It also, revealed that the occurrence of clades associated with geographical distribution may be associated with cryptic species. The latter was also confirmed by a Single-Strand Conformation Polymorphism (SSCP) methodology evaluating the same fragment of CO II. This experimental approach allows properly recognizing each species and in consequence is proposed as an effective tool in Diatraea species identification.


Subject(s)
Electron Transport Complex IV/genetics , Lepidoptera/enzymology , Animals , DNA, Single-Stranded/chemistry , Genitalia, Male/anatomy & histology , Lepidoptera/anatomy & histology , Male , Nucleic Acid Conformation , Nucleotides/genetics , Phylogeny , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Restriction Mapping , Sequence Analysis, DNA , Species Specificity
16.
BMC Genomics ; 16: 1008, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26607569

ABSTRACT

BACKGROUND: Baculoviruses are insect-associated viruses carrying large, circular double-stranded-DNA genomes with significant biotechnological applications such as biological pest control, recombinant protein production, gene delivery in mammals and as a model of DNA genome evolution. These pathogens infect insects from the orders Lepidoptera, Hymenoptera and Diptera, and have high species diversity which is expressed in their diverse biological properties including morphology, virulence or pathogenicity. Spodoptera frugiperda (Lepidoptera: Noctuidae), the fall armyworm, represents a significant pest for agriculture in America; it is a host for baculoviruses such as the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) (Colombia strain, genotype A) having been classified as a Group II alphabaculovirus making it a very attractive target for bioinsecticidal use. RESULTS: Genome analysis by pyrosequencing revealed that SfMNPV ColA has 145 ORFs, 2 of which were not present in the other sequenced genotypes of the virus (SfMNPV-NicB, SfMNPV-NicG, SfMNPV-19 and SfMNPV-3AP2). An in-depth bioinformatics study showed that ORF023 and ORF024 were acquired by a recent homologous recombination process between Spodoptera frugiperda and Spodoptera litura (the Oriental leafworm moth) nucleopolyhedroviruses. Auxiliary genes are numerous in the affected locus which has a homologous region (hr3), a repetitive sequence associated with genome replication which became lost in SfColA along with 1 ORF. Besides, the mRNAs associated with two acquired genes appeared in the virus' life-cycle during the larval stage. Predictive studies concerning the theoretical proteins identified that ORF023 protein would be a phosphatase involved in DNA repair and that the ORF024 protein would be a membrane polypeptide associated with cell transport. CONCLUSIONS: The SfColA genome was thus revealed to be a natural recombinant virus showing evidence of recent horizontal gene transfer between different baculovirus species occurring in nature. This feature could be the cause of its high insecticidal power and therefore SfColA becomes a great candidate for bioinsecticide formulations.


Subject(s)
Gene Transfer, Horizontal , Nucleopolyhedroviruses/genetics , Spodoptera/genetics , Spodoptera/virology , Animals , Computational Biology/methods , Gene Expression Regulation, Viral , Gene Order , Genes, Viral , Genome, Viral , Genomics , Insect Control , Nucleopolyhedroviruses/classification , Open Reading Frames , Phylogeny
17.
Viruses ; 7(1): 394-421, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25609309

ABSTRACT

Spodoptera frugiperda (Lepidoptera: Noctuidae) is a major pest in maize crops in Colombia, and affects several regions in America. A granulovirus isolated from S. frugiperda (SfGV VG008) has potential as an enhancer of insecticidal activity of previously described nucleopolyhedrovirus from the same insect species (SfMNPV). The SfGV VG008 genome was sequenced and analyzed showing circular double stranded DNA of 140,913 bp encoding 146 putative ORFs that include 37 Baculoviridae core genes, 88 shared with betabaculoviruses, two shared only with betabaculoviruses from Noctuide insects, two shared with alphabaculoviruses, three copies of own genes (paralogs) and the other 14 corresponding to unique genes without representation in the other baculovirus species. Particularly, the genome encodes for important virulence factors such as 4 chitinases and 2 enhancins. The sequence analysis revealed the existence of eight homologous regions (hrs) and also suggests processes of gene acquisition by horizontal transfer including the SfGV VG008 ORFs 046/047 (paralogs), 059, 089 and 099. The bioinformatics evidence indicates that the genome donors of mentioned genes could be alpha- and/or betabaculovirus species. The previous reported ability of SfGV VG008 to naturally co-infect the same host with other virus show a possible mechanism to capture genes and thus improve its fitness.


Subject(s)
Baculoviridae/genetics , DNA, Viral/chemistry , DNA, Viral/genetics , Genome, Viral , Spodoptera/virology , Animals , Baculoviridae/isolation & purification , Colombia , DNA/chemistry , DNA/genetics , DNA, Circular/chemistry , DNA, Circular/genetics , Gene Transfer, Horizontal , Molecular Sequence Annotation , Molecular Sequence Data , Open Reading Frames , Recombination, Genetic , Sequence Analysis, DNA , Sequence Homology , Virulence Factors/genetics
18.
J Virol ; 86(22): 12069-79, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22933288

ABSTRACT

The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae.


Subject(s)
Baculoviridae/genetics , Genes, Viral , Algorithms , Amino Acid Motifs , Computational Biology/methods , DNA, Viral/genetics , Databases, Genetic , Evolution, Molecular , Genome, Viral , Models, Genetic , Models, Statistical , Sequence Alignment , Sequence Analysis, DNA , Viral Proteins/genetics , Virion/genetics
19.
Arch Virol ; 157(8): 1569-71, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22543633

ABSTRACT

The mosquito iridescent viruses (MIVs) are large icosahedral DNA viruses that replicate and assemble in the cytoplasm of the host. Paracrystalline arrangements of virions that accumulate in the cytoplasm produce an iridescent color that is symptomatic of acute infections. In August 2010, we found larvae of Culex pipiens with these symptoms in suburban ditches around the city of La Plata, Argentina. Electron microscope studies, DNA sequencing, and phylogenetic analysis of the major capsid protein confirmed this as the first record of an MIV in C. Pipiens.


Subject(s)
Culex/virology , Iridovirus , Animals , Base Sequence , Iridovirus/classification , Iridovirus/genetics , Iridovirus/isolation & purification , Larva/virology , Phylogeny , Sequence Alignment , Sequence Analysis, DNA
20.
Int J Evol Biol ; 2011: 379424, 2011.
Article in English | MEDLINE | ID: mdl-21716740

ABSTRACT

The Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp. In this study, genome sequences from 57 baculoviruses were analyzed to reevaluate the number and identity of core genes and to understand the distribution of the remaining coding sequences. Thirty one core genes with orthologs in all genomes were identified along with other 895 genes differing in their degrees of representation among reported genomes. Many of these latter genes are common to well-defined lineages, whereas others are unique to one or a few of the viruses. Phylogenetic analyses based on core gene sequences and the gene composition of the genomes supported the current division of the Baculoviridae into 4 genera: Alphabaculovirus, Betabaculovirus, Gammabaculovirus, and Deltabaculovirus.

SELECTION OF CITATIONS
SEARCH DETAIL
...