Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 21(22): 4464-4476, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34651637

ABSTRACT

Loss of photoreceptors due to retinal degeneration is a major cause of untreatable visual impairment and blindness. Cell replacement therapy, using retinal stem cell (RSC)-derived photoreceptors, holds promise for reconstituting damaged cell populations in the retina. One major obstacle preventing translation to the clinic is the lack of validated markers or strategies to prospectively identify these rare cells in the retina and subsequently enrich them. Here, we introduce a microfluidic platform that combines nickel micromagnets, herringbone structures, and a design enabling varying flow velocities among three compartments to facilitate a highly efficient enrichment of RSCs. In addition, we developed an affinity enrichment strategy based on cell-surface markers that was utilized to isolate RSCs from the adult ciliary epithelium. We showed that targeting a panel of three cell surface markers simultaneously facilitates the enrichment of RSCs to 1 : 3 relative to unsorted cells. Combining the microfluidic platform with single-cell whole-transcriptome profiling, we successfully identified four differentially expressed cell surface markers that can be targeted simultaneously to yield an unprecedented 1 : 2 enrichment of RSCs relative to unsorted cells. We also identified transcription factors (TFs) that play functional roles in maintenance, quiescence, and proliferation of RSCs. This level of analysis for the first time identified a spectrum of molecular and functional properties of RSCs.


Subject(s)
Microfluidics , Retina , Animals , Cell Differentiation , Cell Proliferation , Gene Expression Profiling , Mice , Stem Cells
2.
Stem Cell Res ; 33: 215-227, 2018 12.
Article in English | MEDLINE | ID: mdl-30453152

ABSTRACT

During development, multipotent progenitors undergo temporally-restricted differentiation into post-mitotic retinal cells; however, the mechanisms of progenitor division that occurs during retinogenesis remain controversial. Using clonal analyses (lineage tracing and single cell cultures), we identify rod versus cone lineage-specific progenitors derived from both adult retinal stem cells and embryonic neural retinal precursors. Taurine and retinoic acid are shown to act in an instructive and lineage-restricted manner early in the progenitor lineage hierarchy to produce rod-restricted progenitors from stem cell progeny. We also identify an instructive, but lineage-independent, mechanism for the specification of cone-restricted progenitors through the suppression of multiple differentiation signaling pathways. These data indicate that exogenous signals play critical roles in directing lineage decisions and resulting in fate-restricted rod or cone photoreceptor progenitors in culture. Additional factors may be involved in governing photoreceptor fates in vivo.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Retina/physiopathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Stem Cells/metabolism , Animals , Cell Differentiation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...