Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 20(3): 262-7, 2008.
Article in English | MEDLINE | ID: mdl-18595390

ABSTRACT

Four microorganisms, Pseudomonas sp. (ER2), Aspergillus niger (ER6), Cladosporium herbarum (ER4) and Penicilluim sp. (ER3), were isolated from cucumber leaves previously treated with metalaxyl using enrichment technique. These isolates were evaluated for detoxification of metalaxyl at the recommended dose level in aquatic system. The effect of pH and temperature on the growth ability of the tested isolates was also investigated by measuring the intracellular protein and mycelia dry weight for bacterial and fungal isolates, respectively. Moreover, the toxicity of metalaxyl after 28 d of treatment with the tested isolates was evaluated to confirm the complete removal of any toxic materials (metalaxyl and its metabolites). The results showed that the optimum degree pH for the growth of metalaxyl degrading isolates (bacterial and fungal isolates) was 7. The temperature 30 degrees C appeared to be the optimum degree for the growth of either fungal or bacterial isolates. The results showed that Pseudomonas sp. (ER2) was the most effective isolate in metalaxyl degradation followed by Aspergillus niger (ER6), Cladosporium herbarum (ER4) and Penicilluim sp. (ER3), respectively. There is no toxicity of metalaxyl detected in the supernatant after 28 d of treatment with Pseudomonas sp. (ER2). The results suggest that bioremediation by Pseudomonas sp. (ER2) isolate was considered to be effective method for detoxification of metalaxyl in aqueous media.


Subject(s)
Alanine/analogs & derivatives , Water Microbiology , Water Pollutants, Chemical/metabolism , Alanine/metabolism , Aspergillus niger/growth & development , Aspergillus niger/metabolism , Biodegradation, Environmental , Cladosporium/growth & development , Cladosporium/metabolism , Hydrogen-Ion Concentration , Penicillium/growth & development , Penicillium/metabolism , Pseudomonas/growth & development , Pseudomonas/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...