Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(2): e0263056, 2022.
Article in English | MEDLINE | ID: mdl-35134065

ABSTRACT

Narrowing the communication and knowledge gap between producers and users of scientific data is a longstanding problem in ecological conservation and land management. Decision support tools (DSTs), including websites or interactive web applications, provide platforms that can help bridge this gap. DSTs can most effectively disseminate and translate research results when producers and users collaboratively and iteratively design content and features. One data resource seldom incorporated into DSTs are species distribution models (SDMs), which can produce spatial predictions of habitat suitability. Outputs from SDMs can inform management decisions, but their complexity and inaccessibility can limit their use by resource managers or policy makers. To overcome these limitations, we present the Invasive Species Habitat Tool (INHABIT), a novel, web-based DST built with R Shiny to display spatial predictions and tabular summaries of habitat suitability from SDMs for invasive plants across the contiguous United States. INHABIT provides actionable science to support the prevention and management of invasive species. Two case studies demonstrate the important role of end user feedback in confirming INHABIT's credibility, utility, and relevance.


Subject(s)
Conservation of Natural Resources/methods , Introduced Species/statistics & numerical data , Plant Dispersal/physiology , Decision Making , Decision Support Techniques , Ecosystem , Internet , Plants/classification , Software , United States
2.
PLoS One ; 16(9): e0256633, 2021.
Article in English | MEDLINE | ID: mdl-34543290

ABSTRACT

Habitat loss from land-use change is one of the top causes of declines in wildlife species of concern. As such, it is critical to assess and reassess habitat suitability as land cover and anthropogenic features change for both monitoring and developing current information to inform management decisions. However, there are obstacles that must be overcome to develop consistent assessments through time. A range-wide lek habitat suitability model for the lesser prairie-chicken (Tympanuchus pallidicinctus), currently under review by the U. S. Fish and Wildlife Service for potential listing under the Endangered Species Act, was published in 2016. This model was based on lek data from 2002 to 2012, land cover data ranging from 2001 to 2013, and anthropogenic features from circa 2011, and has been used to help guide lesser prairie-chicken management and anthropogenic development actions. We created a second iteration model based on new lek surveys (2015 to 2019) and updated predictors (2016 land cover and cleaned/updated anthropogenic data) to evaluate changes in lek suitability and to quantify current range-wide habitat suitability. Only three of 11 predictor variables were directly comparable between the iterations, making it difficult to directly assess what predicted changes resulted from changes in model inputs versus actual landscape change. The second iteration model showed a similar positive relationship with land cover and negative relationship with anthropogenic features to the first iteration, but exhibited more variation among candidate models. Range-wide, more suitable habitat was predicted in the second iteration. The Shinnery Oak Ecoregion, however, exhibited a loss in predicted suitable habitat that could be due to predictor source changes. Iterated models such as this are important to ensure current information is being used in conservation and development decisions.


Subject(s)
Chickens/physiology , Conservation of Natural Resources , Endangered Species , Galliformes/physiology , Animals , Ecosystem , Grassland , Humans , Quail/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...