Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 14(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501664

ABSTRACT

In this work, we report a new facile method for the preparation of myrcene-limonene copolymers and nanocomposites using a Lewis acid as a catalyst (AlCl3) and organo-modified clay as a nano-reinforcing filler. The copolymer (myr-co-lim) was prepared by cationic copolymerization using AlCl3 as a catalyst. The structure of the obtained copolymer is studied and confirmed by Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, and Differential Scanning Calorimetry. By improving the dispersion of the matrix polymer in sheets of the organoclay, Maghnite-CTA+ (Mag-CTA+), an Algerian natural organophilic clay, was used to preparenanocomposites of linear copolymer (myr-co-lim). In order to identify and assess their structural, morphological, and thermal properties, the effect of the organoclay, used in varyingamounts (1, 4, 7, and 10% by weight), and the preparation process were investigated. The Mag-CTA+ is an organophylic montmorillonite silicate clay prepared through a direct exchange process in which they were used as green nano-reinforcing filler. The X-ray diffraction of the resulting nanocomposites revealed a considerable alteration in the interlayer spacing of Mag-CTA+. As a result, interlayer expansion and myr-co-lim exfoliation between layers of Mag-CTA+ were observed. Thermogravimetric analysis provided information on the synthesized nanocomposites' thermal properties. Fourier transform infrared spectroscopy and scanning electronic microscopy, respectively, were used to determine the structure and morphology of the produced nanocomposites (myr-co-lim/Mag). The intercalation of myr-co-lim in the Mag-CTA+ sheets has been supported by the results, and the optimum amount of organoclay needed to create a nanocomposite with high thermal stability is 10% by weight. Finally, a new method for the preparation of copolymer and nanocomposites from myrcene and limonene in a short reaction time was developed.

2.
Polymers (Basel) ; 14(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35890596

ABSTRACT

In the present work, we report a simple synthesis method for preparation of copolymers and nanocomposites from limonene and styrene using clay as a catalyst. The copolymerization reaction is carried out by using a proton exchanged clay as a catalyst called Mag-H+. The effect of temperature, reaction time and amount of catalyst were studied, and the obtained copolymer structure (lim-co-sty) is characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR) and differential scanning calorimetry (DSC). The molecular weight of the obtained copolymer is determined by gel permeation chromatography (GPC) and is about 4500 g·mol-1. The (lim-co-sty/Mag 1%, 3%, 7% and 10% by weight of clay) nanocomposites were prepared through polymer/clay mixture in solution method using ultrasonic irradiation, in the presence of Mag-CTA+ as green nano-reinforcing filler. The Mag-CTA+ is organophilic silicate clay prepared through a direct exchange process, using cetyltrimethylammonuim bromide (CTAB). The prepared lim-co-sty/Mag nanocomposites have been extensively characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM). TEM analysis confirms the results obtained by XRD and clearly show that the obtained nanocomposites are partially exfoliated for the lower amount of clay (1% and 3% wt) and intercalated for higher amounts of clay (7% and 10% wt). Moreover, thermogravimetric analysis (TGA) indicated an enhancement of thermal stability of nanocomposites compared with the pure copolymer.

3.
Data Brief ; 31: 105857, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32613043

ABSTRACT

The activity developed in vast areas of northwest africa causes serious invasions of different species of orthoptera insect which poses a great danger to agriculture and thus to nutrition of peoples and animals in general. In (Algeria), FAO considers the regions of naama, tindouf, adrar and bechar in Algeria as the theater of signaling of swarms and intervention. In this article, we want to shed light on the peculiarities of this insect (orthoptera), its statistics, its species and the families it belongs to in the arid region called naama (southwestern Algeria). The study of orthoptera in the arid region of naama (southern west of Algeria) conducted at three stations (Mecheria, Ben ammar) and the wetland of (Ain ben khelil) during the period from august 2015 until august 2017 allowed to identify nineteen (19) species divided into two sub-orders ensifera and caelifera. They are divided into five families (Tettigonidae, Gryllidae Pamphagidae, Acrididae, and Pyrgomorphidae). Acrididae family is the largest with five species. Oedipodinae subfamily is the most numerous genera and species it includes four (4) different types genders and seven species (7). The highest diversity index of the shannon-weaver is obtained at the wetland ain ben khelil is 2.12 bits, followed by the station of ben ammar with 2.06 bits and station of mecheria remains in third with 1.89 bit values of fairness are close to one corresponding to populations in balance entered them. The determination of species, genders and families of this population is based on several morphological criteria such as the shape of the pronotum, and the color of membranous wings and the shape of the hind legs.

4.
Data Brief ; 30: 105659, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32426432

ABSTRACT

Orthoptera are capable of threat of agriculture, human health and resists to all pesticides used. This problem is become an objectif of many research's. Pesticide resistance is the adaptation of insects to this materials resulting in decreased susceptibility to that chemical. In other hand, insects develop a resistance through natural selection such chemically transformation, physiological phenomena and genetic. In our study, natural chitin was extracted from cuticle of orthoptera insect (southern of Algeria) using a chemical strategy consists on hydrochloric acid, sodium hydroxide and hydrogen peroxide. The average yield of extracted chitin (96.95% w) indicates that the cuticles of orthoptera are a rich source of chitin. Cuticle exhibit a heterogeneous morphology characterized by a compact structure with well-defined fibrous. For extracted chitin and after demineralization, we can appreciate important changes in the surface of material. We observed round shaped black spots indicated that they are composed almost exclusively by K2O and CaO (cuticle) in the other hand we observed several white taches behind black spots, here we suggest that white taches present chitin extracted. The most resistant orthoptera are the ones to survive and transform their properties by chemical process such as transformation of chitin to chitosan and physiological development such as age. In this study, we have found that the first generation has a great resistance to insecticides. After insecticide application we observed a descendant's resistance decreased a larger because sensitive insects have been selectively killed. After repeated applications resistant insects may comprise the minority. Finally we can said, insecticide resistance can be found in many types and we can conclude that physiological resistance and chemical resistance coexist together and cannot separate. In the physiological resistance, the insect populations may develop the ability to avoid or reduce lethal insecticide exposure. In contrast, chemical resistance refers to modification mechanisms, including reduced cuticle penetration and decreased or increased target site sensitivity. The extracted chitin sample and chitosan were characterized by several characterizations such as X-ray diffraction, scanning electron microscopy SEM, FTIR and 1HRMN spectroscopy.

5.
Data Brief ; 30: 105407, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32215310

ABSTRACT

In the recent years, the dominant cementitious materials have been industrial by products such as fly ash. This present data describes some of the cementitious products that are attracting attention in the global research community and the properties and characteristics of these materials that affect their performance such durability, mechanically properties and reduction of carbon dioxid (CO2). The present investigation deals with the chemical synthesis of cementitious material using fly ash of eggs shell rich in calcium(Ca) and sand dune(southern west of Algeria) rich in silica(SiO2).The composition of geopolymers synthesized are the most compressive resistant with a maximum stress of 49.71 MPa, the most flexible (E = 2.63 GPa) and the most ductile (εr = 65.42%).The characteristic properties of the chemically synthesized cementitious materials were analyzed by the chemical composition analysis XRF, XRD and SEM analyses.

6.
Data Brief ; 29: 105161, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32071960

ABSTRACT

In this data we report on conductors polymers nanocomposites synthesized by in situ polymerization of aniline (ANI) and/or 4-aminobenzylamine (4-ABA) in presence of chromium montmorillonite (MMT-Cr+3) and ammonium persulfate as oxidizing agent. Homopolymers and copolymers (PANI-co-4-ABA) were prepared at various initial monomer composition and were characterized by Fourier transform Infrared (FT-IR) and UV-vis spectroscopy, X-ray diffraction (XRD) and cyclic voltammeter. The data describes the behavior of the corresponding homopolymers Poly (4-ABA) and (PANI) and showed that the in-situ polymerization produced real nanocomposites containing aniline and 4-aminobenzylamine units and films of products exhibit good electrochemical properties.

7.
Ultrason Sonochem ; 55: 149-156, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30852152

ABSTRACT

Here we describe an efficient and rapid way for the polymerization of the 3-Octyl-1-vinylimidazolium Bromide using ultrasonic irradiation. This way promoted high dispersion polymerization using a water-soluble free radical initiator namely 4,4'-Azobis (4-cyanopentanoic acid) and free of dispersant. The ionic liquid monomer was prepared via quaternization of 1-vinylimidazole with octyl bromide also promoted by ultrasound. The polymerization rates were compared with a conventional heating method and appeared to be higher in the case of the ultrasound method within a short reaction time. The structural/morphological features and thermal properties of the obtained products were determined by different analytical techniques such as (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electronic microscopy (SEM, TEM), Fourier transform infrared spectroscopy (FTIR) and NMR Spectroscopy (1H and 13C NMR). The morphology and the thermal behavior of the obtained poly(ionic liquid) were investigated and discussed. The results indicated that self-assembled nanospherical particles of 30-80 nm in diameter were obtained through the ultrasound method, while on the other hand; worm-like/cylindrical agglomerated nanoparticles with irregular sizes 50-300 nm in diameter were obtained via the classical heating method.

8.
Ultrason Sonochem ; 48: 188-198, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30080541

ABSTRACT

This work focuses on the preparation and characterization of nanocomposites poly(glycidylmethacrylate)/organoclay. Effect of the organoclays nature and the preparation method were investigated in order to evaluate their structural, morphological and thermal properties. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption at 77 K, scanning and transmission electronic microscopy (SEM, TEM) and thermogravimetric analysis (TGA) were employed to determine the features of the obtained materials. In the first step, the Algerian clay was modified by ultrasonic-assisted method using different concentrations of CTAB or TBAHS in which were used as green nano-filler. A series of nanocomposites were prepared by two different methods. The first deals the in-situ polymerization of GMA within the organoclay galleries and the second pathway involves the use of solution blending of poly(GMA) assisted by ultrasound. The obtained results confirm the intercalation of surfactants within the clay layers, while the nanocomposites obtained by the both methods showed different morphologies and structures in which the exfoliated and intercalated forms were obtained. Both nanocomposites displayed significant enhancement in the thermal stabilities compared to the unmodified poly(GMA). The best results in terms of reaction time, clay dispersion and nanocomposite yield were obtained by the ultrasound method.

9.
Amino Acids ; 48(12): 2717-2729, 2016 12.
Article in English | MEDLINE | ID: mdl-27565657

ABSTRACT

Lipidomics calls for information on detected lipids and conjugates whose structural elucidation by mass spectrometry requires to rationalization of their gas phase dissociations toward collision-induced dissociation (CID) processes. This study focused on activated dissociations of two lipoamino acid (LAA) systems composed of N-palmitoyl acyl coupled with aspartic and glutamic acid mono ethyl esters (as LAA(*D) and LAA(*E)). Although in MS/MS, their CID spectra show similar trends, e.g., release of water and ethanol, the [(LAA(*D/*E)+H)-C2H5OH]+ product ions dissociate via distinct pathways in sequential MS3 experiments. The formation of all the product ions is rationalized by charge-promoted cleavages often involving stepwise processes with ion isomerization into ion-dipole prior to dissociation. The latter explains the maleic anhydride or ketene neutral losses from N-palmitoyl acyl aspartate and glutamate anhydride fragment ions, respectively. Consequently, protonated palmitoyl acid amide is generated from LAA(*D), whereas LAA(*E) leads to the [*E+H-H2O]+ anhydride. The former releases ammonia to provide acylium, which gives the C n H(2n-1) and C n H(2n-3) carbenium series. This should offer structural information, e.g., to locate either unsaturation(s) or alkyl group branching present on the various fatty acyl moieties of lipo-aspartic acid in further studies based on MS n experiments.


Subject(s)
Aspartic Acid/chemistry , Glutamic Acid/chemistry , Lipids/chemistry , Anhydrides , Ethyl Ethers/chemistry , Glutamic Acid/analogs & derivatives , Hydrogenation , Ions/chemistry , Tandem Mass Spectrometry , Water/chemistry
10.
Molecules ; 9(11): 968-77, 2004 Nov 30.
Article in English | MEDLINE | ID: mdl-18007497

ABSTRACT

The polycondensation of tetrahydrofuran with maleic anhydride catalyzed by Maghnite-H+ (Mag-H) was investigated. Maghnite is a montmorillonite sheet silicate clay that is exchanged with protons to produce Maghnite-H [1]. It was found that the polymerization in bulk is initiated by Mag-H in the presence of acetic anhydride at 40 degrees C. The effects of the amounts of Mag-H and acetic anhydride were studied. The polymerization yield increased as the proportions of catalyst and acetic anhydride were increased.


Subject(s)
Aluminum Silicates/chemistry , Bentonite/chemistry , Furans/chemistry , Maleic Anhydrides/chemistry , Polymers/chemical synthesis , Protons , Acetic Anhydrides/chemistry , Catalysis , Clay , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...