Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915592

ABSTRACT

Music-based interventions are a common feature in long-term care with clinical reports highlighting music's ability to engage individuals with complex diagnoses. While these findings are promising, normative findings from healthy controls are needed to disambiguate treatment effects unique to pathology and those seen in healthy aging. The present study examines brain network dynamics during music listening in a sample of healthy older adults before and after a music-based intervention. We found intervention effects from hidden Markov model-estimated fMRI network data. Following the intervention, participants demonstrated greater occupancy (the amount of time a network was occupied) in a temporal-mesolimbic network. We conclude that network dynamics in healthy older adults are sensitive to music-based interventions. We discuss these findings' implications for future studies with individuals with neurodegeneration.

2.
Netw Neurosci ; 7(4): 1404-1419, 2023.
Article in English | MEDLINE | ID: mdl-38144689

ABSTRACT

Listening to music is an enjoyable behaviour that engages multiple networks of brain regions. As such, the act of music listening may offer a way to interrogate network activity, and to examine the reconfigurations of brain networks that have been observed in healthy aging. The present study is an exploratory examination of brain network dynamics during music listening in healthy older and younger adults. Network measures were extracted and analyzed together with behavioural data using a combination of hidden Markov modelling and partial least squares. We found age- and preference-related differences in fMRI data collected during music listening in healthy younger and older adults. Both age groups showed higher occupancy (the proportion of time a network was active) in a temporal-mesolimbic network while listening to self-selected music. Activity in this network was strongly positively correlated with liking and familiarity ratings in younger adults, but less so in older adults. Additionally, older adults showed a higher degree of correlation between liking and familiarity ratings consistent with past behavioural work on age-related dedifferentiation. We conclude that, while older adults do show network and behaviour patterns consistent with dedifferentiation, activity in the temporal-mesolimbic network is relatively robust to dedifferentiation. These findings may help explain how music listening remains meaningful and rewarding in old age.

3.
bioRxiv ; 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37609323

ABSTRACT

Aging is associated with decreased functional connectivity within the default mode network, as well as auditory and reward systems which are involved in music listening. Understanding how music listening affects network organization of the aging brain, both globally and specific to the brain networks, will have implications for designing lifestyle interventions that tap into distinct networks in the brain. Here we apply graph-theory metrics of modularity, global efficiency, clustering coefficients, degrees, and betweenness centrality to compare younger and older adults (YA/OA, N=24 per group) in fMRI connectivity during rest and a music listening task. Results show a less modular but more globally efficient connectome in OAs, especially during music listening, resulting in main effects of group and task, as well as group-by-task interactions. ROI analyses indicated that the posterior cingulate is more centrally located than the medial prefrontal cortex in OAs. Overall, reduced modularity and increased global efficiency with age is in keeping with previously-observed functional reorganizations, and interaction effects show that age-related differences in baseline network organization are reflected in, potentially magnified by, music listening.

4.
J Cogn Neurosci ; 35(10): 1570-1592, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37432735

ABSTRACT

The intrinsic organization of functional brain networks is known to change with age, and is affected by perceptual input and task conditions. Here, we compare functional activity and connectivity during music listening and rest between younger (n = 24) and older (n = 24) adults, using whole-brain regression, seed-based connectivity, and ROI-ROI connectivity analyses. As expected, activity and connectivity of auditory and reward networks scaled with liking during music listening in both groups. Younger adults show higher within-network connectivity of auditory and reward regions as compared with older adults, both at rest and during music listening, but this age-related difference at rest was reduced during music listening, especially in individuals who self-report high musical reward. Furthermore, younger adults showed higher functional connectivity between auditory network and medial prefrontal cortex that was specific to music listening, whereas older adults showed a more globally diffuse pattern of connectivity, including higher connectivity between auditory regions and bilateral lingual and inferior frontal gyri. Finally, connectivity between auditory and reward regions was higher when listening to music selected by the participant. These results highlight the roles of aging and reward sensitivity on auditory and reward networks. Results may inform the design of music-based interventions for older adults and improve our understanding of functional network dynamics of the brain at rest and during a cognitively engaging task.


Subject(s)
Magnetic Resonance Imaging , Music , Humans , Aged , Brain/diagnostic imaging , Aging , Brain Mapping/methods , Reward , Auditory Perception
5.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-36711696

ABSTRACT

The intrinsic organization of functional brain networks is known to change with age, and is affected by perceptual input and task conditions. Here, we compare functional activity and connectivity during music listening and rest between younger (N=24) and older (N=24) adults, using whole brain regression, seed-based connectivity, and ROI-ROI connectivity analyses. As expected, activity and connectivity of auditory and reward networks scaled with liking during music listening in both groups. Younger adults show higher within-network connectivity of auditory and reward regions as compared to older adults, both at rest and during music listening, but this age-related difference at rest was reduced during music listening, especially in individuals who self-report high musical reward. Furthermore, younger adults showed higher functional connectivity between auditory network and medial prefrontal cortex (mPFC) that was specific to music listening, whereas older adults showed a more globally diffuse pattern of connectivity, including higher connectivity between auditory regions and bilateral lingual and inferior frontal gyri. Finally, connectivity between auditory and reward regions was higher when listening to music selected by the participant. These results highlight the roles of aging and reward sensitivity on auditory and reward networks. Results may inform the design of music- based interventions for older adults, and improve our understanding of functional network dynamics of the brain at rest and during a cognitively engaging task.

6.
Sci Rep ; 12(1): 11517, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798784

ABSTRACT

Listening to pleasurable music is known to engage the brain's reward system. This has motivated many cognitive-behavioral interventions for healthy aging, but little is known about the effects of music-based intervention (MBI) on activity and connectivity of the brain's auditory and reward systems. Here we show preliminary evidence that brain network connectivity can change after receptive MBI in cognitively unimpaired older adults. Using a combination of whole-brain regression, seed-based connectivity analysis, and representational similarity analysis (RSA), we examined fMRI responses during music listening in older adults before and after an 8-week personalized MBI. Participants rated self-selected and researcher-selected musical excerpts on liking and familiarity. Parametric effects of liking, familiarity, and selection showed simultaneous activation in auditory, reward, and default mode network (DMN) areas. Functional connectivity within and between auditory and reward networks was modulated by participant liking and familiarity ratings. RSA showed significant representations of selection and novelty at both time-points, and an increase in striatal representation of musical stimuli following intervention. An exploratory seed-based connectivity analysis comparing pre- and post-intervention showed significant increase in functional connectivity between auditory regions and medial prefrontal cortex (mPFC). Taken together, results show how regular music listening can provide an auditory channel towards the mPFC, thus offering a potential neural mechanism for MBI supporting healthy aging.


Subject(s)
Music , Aged , Auditory Perception/physiology , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Humans , Magnetic Resonance Imaging , Reward
7.
Front Hum Neurosci ; 14: 280, 2020.
Article in English | MEDLINE | ID: mdl-32765244

ABSTRACT

Music-based interventions (MBI) have become increasingly widely adopted for dementia and related disorders. Previous research shows that music engages reward-related regions through functional connectivity with the auditory system, but evidence for the effectiveness of MBI is mixed in older adults with mild cognitive impairment (MCI) and Alzheimer's disease (AD). This underscores the need for a unified mechanistic understanding to motivate MBIs. The main objective of the present study is to characterize the intrinsic connectivity of the auditory and reward systems in healthy aging individuals with MCI, and those with AD. Using resting-state fMRI data from the Alzheimer's Database Neuroimaging Initiative, we tested resting-state functional connectivity within and between auditory and reward systems in older adults with MCI, AD, and age-matched healthy controls (N = 105). Seed-based correlations were assessed from regions of interest (ROIs) in the auditory network (i.e., anterior superior temporal gyrus, posterior superior temporal gyrus, Heschl's Gyrus), and the reward network (i.e., nucleus accumbens, caudate, putamen, and orbitofrontal cortex). AD individuals were lower in both within-network and between-network functional connectivity in the auditory network and reward networks compared to MCI and controls. Furthermore, graph theory analyses showed that the MCI group had higher clustering and local efficiency than both AD and control groups, whereas AD individuals had lower betweenness centrality than MCI and control groups. Together, the auditory and reward systems show preserved within- and between-network connectivity in MCI individuals relative to AD. These results motivate future music-based interventions in individuals with MCI due to the preservation of functional connectivity within and between auditory and reward networks at that initial stage of neurodegeneration.

8.
Neuroimage ; 207: 116384, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31760149

ABSTRACT

Jazz improvisation offers a model for creative cognition, as it involves the real-time creation of a novel, information-rich product. Previous research has shown that when musicians improvise, they recruit regions in the Default Mode Network (DMN) and Executive Control Network (ECN). Here, we ask whether these findings from task-fMRI studies might extend to intrinsic differences in resting state functional connectivity. We compared Improvising musicians, Classical musicians, and Minimally Musically Trained (MMT) controls in seed-based functional connectivity and network analyses in resting state functional MRI. We also examined the functional correlates of behavioral performance in musical improvisation and divergent thinking. Seed-based analysis consistently showed higher connectivity in ventral DMN (vDMN) and bilateral ECN in both groups of musically trained individuals as compared to MMT controls, with additional group differences in primary visual network. In particular, primary visual network connectivity to DMN and ECN was highest in Improvisational musicians, as was connectivity between ECN and DMN; in contrast, connectivity between vDMN and frontal pole was highest in Classical musicians. Furthermore, graph-theoretical analysis indicated heightened network measures in both musician groups, with betweenness centrality, clustering, and local efficiency showing highest levels in Classical musicians, and degrees and strengths showing highest levels in Improvisational musicians. Taken together, results suggest that heightened functional connectivity among musicians can be explained by higher within-network connectivity (more tight-knit cortical networks) in Classical musicians, as opposed to more disperse, globally-connected cortical networks in Improvisational musicians.


Subject(s)
Brain/physiology , Creativity , Music , Neural Pathways/physiology , Adult , Brain Mapping/methods , Cognition/physiology , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...