Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (123)2017 05 29.
Article in English | MEDLINE | ID: mdl-28605380

ABSTRACT

The incidence of skin cancer (e.g., squamous cell carcinoma, basal cell carcinoma, and melanoma) has been increasing over the past several years. It is expected that there will be a parallel demand for cutaneous tumor samples for biomedical research studies. Tissue availability, however, is limited due the cost of establishing a biorepository and the lack of protocols available for obtaining clinical samples that do not interfere with clinical operations. A protocol was established to collect and process cutaneous tumor and associated blood and saliva samples that has minimal impact on routine clinical procedures on the date of a Mohs surgery. Tumor samples are collected and processed from patients undergoing their first layer of Mohs surgery for biopsy-proven cutaneous malignancies by the Mohs histotechnologist. Adjacent normal tissue is collected at the time of surgical closure. Additional samples that may be collected are whole-blood and buccal swabs. By utilizing tissue samples that are normally discarded, a biorepository was generated that offers several key advantages by being based in the clinic versus the laboratory setting. These include a wide range of collected samples; access to de-identified patient records, including pathology reports; and, for the typical donor, access to additional samples during follow-up visits.


Subject(s)
Carcinoma, Basal Cell/diagnostic imaging , Carcinoma, Squamous Cell/diagnostic imaging , Melanoma/diagnostic imaging , Mohs Surgery/methods , Skin Neoplasms/diagnostic imaging , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/surgery , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Female , Humans , Melanoma/pathology , Melanoma/surgery , Skin Neoplasms/pathology , Skin Neoplasms/surgery
2.
Reprod Biol Endocrinol ; 8: 147, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21122138

ABSTRACT

BACKGROUND: Recent data provide significant evidence to support the hypothesis that there are sub-populations of cells within solid tumors that have an increased tumor initiating potential relative to the total tumor population. CD133, a cell surface marker expressed on primitive cells of neural, hematopoietic, endothelial and epithelial lineages has been identified as a marker for tumor initiating cells in solid tumors of the brain, colon, pancreas, ovary and endometrium. Our objectives were to assess the relative level of CD133 expressing cells in primary human endometrial tumors, confirm their tumorigenic potential, and determine whether CD133 expression was epigenetically modified. METHODS: We assessed CD133 expression in primary human endometrial tumors by flow cytometry and analyzed the relative tumorigenicity of CD133+ and CD133- cells in an in vivo NOD/SCID mouse model. We assessed potential changes in CD133 expression over the course of serial transplantation by immunofluorescence and flow cytometry. We further examined CD133 promoter methylation and expression in normal endometrium and malignant tumors. RESULTS: As determined by flow cytometric analysis, the percentage of CD133+ cells in primary human endometrial cancer samples ranged from 5.7% to 27.4%. In addition, we confirmed the tumor initiating potential of CD133+ and CD133- cell fractions in NOD/SCID mice. Interestingly, the percentage of CD133+ cells in human endometrial tumor xenografts, as evidenced by immunofluorescence, increased with serial transplantation although this trend was not consistently detected by flow cytometry. We also determined that the relative levels of CD133 increased in endometrial cancer cell lines following treatment with 5-aza-2'-deoxycytidine suggesting a role for methylation in the regulation of CD133. To support this finding, we demonstrated that regions of the CD133 promoter were hypomethylated in malignant endometrial tissue relative to benign control endometrial tissue. Lastly, we determined that methylation of the CD133 promoter decreases over serial transplantation of an endometrial tumor xenograft. CONCLUSIONS: These findings support the hypotheses that CD133 expression in endometrial cancer may be epigenetically regulated and that cell fractions enriched for CD133+ cells may well contribute to endometrial cancer tumorigenicity, pathology and recurrence.


Subject(s)
Antigens, CD/genetics , Cell Transformation, Neoplastic/pathology , Endometrial Neoplasms/pathology , Epigenomics , Glycoproteins/genetics , Neoplastic Stem Cells/pathology , Peptides/genetics , AC133 Antigen , Animals , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Decitabine , Endometrial Neoplasms/genetics , Endometrial Neoplasms/immunology , Endometrial Neoplasms/metabolism , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Neoplastic Stem Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...