Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(12): e0276644, 2022.
Article in English | MEDLINE | ID: mdl-36516118

ABSTRACT

Human mobility datasets collected from personal mobile device locations are integral to understanding how states, counties, and cities have collectively adapted to pervasive social disruption stemming from the COVID-19 pandemic. However, while indigenous tribal communities in the United States have been disproportionately devastated by the pandemic, the relatively sparse populations and data available in these hard-hit tribal areas often exclude them from mobility studies. We explore the effects of sparse mobility data in untangling the often inter-correlated relationship between human mobility, distancing orders, and case growth throughout 2020 in tribal and rural areas of California. Our findings account for data sparsity imprecision to show: 1) Mobility through legal tribal boundaries was unusually low but still correlated highly with case growth; 2) Case growth correlated less strongly with mobility later in the the year in all areas; and 3) State-mandated distancing orders later in the year did not necessarily precede lower mobility medians, especially in tribal areas. It is our hope that with more timely feedback offered by mobile device datasets even in sparse areas, health policy makers can better plan health emergency responses that still keep the economy vibrant across all sectors.


Subject(s)
COVID-19 , Pandemics , Humans , United States , COVID-19/epidemiology , California
2.
Sensors (Basel) ; 19(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395827

ABSTRACT

Rural IoT sensor networks, prevalent in environmental monitoring and precision agriculture, commonly operate over some variant of the IEEE 802.15.4 standard. Data collection from these networks is often challenging, as they may be deployed in remote regions where existing backhaul infrastructure is expensive or absent. With the commercial and industrial success of Unmanned Aircraft Systems (UAS), there is understandable interest in using UASs for delay tolerant data collection from 802.15.4 IoT sensor networks. In this study, we investigate how to optimize 802.15.4 networks for aerial data collection, which, unlike other wireless standards, has not received rigorous evaluation for three-dimensional aerial communication. We analyze experimental measurements from an outdoor aerial testbed, examining how factors, such as antenna orientation, altitude, antenna placement, and obstruction, affect signal strength and packet reception rate. In our analysis, we model and predict the quality of service for aerial data collection, based on these network configuration variables, and contrast that with the Received Signal Strength Indication (RSSI)-a commonly used signal strength metric. We find that network configuration plays a significant role in network quality, which RSSI, a mediator variable, struggles to account for in the presence of high packet loss. We conclude with a discussion of strategies for optimizing sensor network configuration for aerial data collection, in light of our results.

SELECTION OF CITATIONS
SEARCH DETAIL
...