Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 459(1): 143-7, 1999 Oct 01.
Article in English | MEDLINE | ID: mdl-10508934

ABSTRACT

In the bacteriorhodopsin-containing proteoliposomes, a laser flash is found to induce formation of a bathointermediate decaying in several seconds, the difference spectrum being similar to the purple-blue transition. Different pH buffers do not affect the intermediate, whereas an uncoupler, gramicidin A, and lipophilic ions accelerate decay of the intermediate or inhibit its formation. In the liposomes containing E204Q bacteriorhodopsin mutant, formation of the intermediate is suppressed. In the wild-type bacteriorhodopsin liposomes, the bathointermediate formation is pH-independent within the pH 5-7 range. The efficiency of the long-lived O intermediate formation increases at a low pH. In the wild-type as well as in the E204Q mutant purple membrane, the O intermediate decay is slowed down at slightly higher pH values than that of the purple-blue transition. It is suggested that the membrane potential affects the equilibrium between the bacteriorhodopsin ground state (Glu-204 is protonated and Asp-85 is deprotonated) and the O intermediate (Asp-85 is protonated and Glu-204 is deprotonated), stabilizing the latter by changing the relative affinity of Asp-85 and Glu-204 to H(+). At a low pH, protonation of a proton-releasing group (possibly Glu-194) in the bacteriorhodopsin ground state seems to prevent deprotonation of the Glu-204 during the photocycle. Thus, all protonatable residues of the outward proton pathway should be protonated in the O intermediate. Under such conditions, membrane potential stabilization of the O intermediate in the liposomes can be attributed to the direct effect of the potential on the pK value of Asp-85.


Subject(s)
Bacteriorhodopsins/metabolism , Halobacterium salinarum/physiology , Purple Membrane/physiology , Bacteriorhodopsins/chemistry , Bacteriorhodopsins/genetics , Hydrogen-Ion Concentration , Liposomes , Membrane Potentials , Mutation , Proton Pumps/metabolism
2.
FEBS Lett ; 434(1-2): 197-200, 1998 Aug 28.
Article in English | MEDLINE | ID: mdl-9738477

ABSTRACT

Electrogenic events in the E204Q bacteriorhodopsin mutant have been studied. A two-fold decrease in the magnitude of microsecond photovoltage generation coupled to M intermediate formation in the E204Q mutant is shown. This means that deprotonation of E204 is an electrogenic process and its electrogenicity is comparable to that of the proton transfer from the Schiff base to D85. pH dependence of the electrogenicity of M intermediate formation in the wild-type bacteriorhodopsin reveals only one component corresponding to the protonation of D85 in the bacteriorhodopsin ground state and transition of the purple neutral form into the blue acid form. Thus, the pK of E204 in the M state is close to the pK of D85 in the bacteriorhodopsin ground state (< 3) and far below the pK of the terminal proton release group (approximately 6). It is concluded that E204 functions as the intermediate proton donor rather than the terminal proton release group in the bacteriorhodopsin proton pump.


Subject(s)
Bacteriorhodopsins/metabolism , Protons , Bacteriorhodopsins/genetics , Energy Metabolism , Halobacterium salinarum , Hydrogen-Ion Concentration , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...