Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35208753

ABSTRACT

Isolated from desert, the nitrogen-fixing bacterium Ensifer aridi LMR001 is capable of survival under particularly harsh environmental conditions. To obtain insights in molecular mechanisms involved in stress adaptation, a recent study using RNAseq revealed that the RpoE2-mediated general stress response was activated under mild saline stress but appeared non-essential for the bacterium to thrive under stress and develop the symbiosis. Functions associated with the stress response included the metabolisms of trehalose, methionine, and inositol. To explore the roles of these metabolisms in stress adaptation and symbiosis development, and the possible regulatory mechanisms involved, mutants were generated notably in regulators and their transcriptions were studied in various mutant backgrounds. We found that mutations in regulatory genes nesR and sahR of the methionine cycle generating S-adenosylmethionine negatively impacted symbiosis, tolerance to salt, and motility in the presence of NaCl. When both regulators were mutated, an increased tolerance to detergent, oxidative, and acid stresses was found, suggesting a modification of the cell wall components which may explain these phenotypes and support a major role of the fine-tuning methylation for symbiosis and stress adaptation of the bacterium. In contrast, we also found that mutations in the predicted trehalose transport and utilization regulator ThuR and the trehalose phosphate phosphatase OtsB-encoding genes improved symbiosis and growth in liquid medium containing 0.4 M of NaCl of LMR001ΔotsB, suggesting that trehalose metabolism control and possibly trehalose-6 phosphate cellular status may be biotechnologically engineered for improved symbiosis under stress. Finally, transcriptional fusions of gfp to promoters of selected genes and expression studies in the various mutant backgrounds suggest complex regulatory interplay between inositol, methionine, and trehalose metabolic pathways.

2.
Syst Appl Microbiol ; 39(2): 122-31, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26867773

ABSTRACT

Bacteria capable of nodulating Acacia tortilis and A. gummifera could be recovered from sand dunes collected in the Moroccan Merzouga desert. The trapping approach enabled the recovery of 17 desert rhizobia that all clustered within the Ensifer (Sinorhizobium) genus. Four isolates of the dominant genotype comprising 15 strains as well as 2 divergent strains were further characterized by MLSA. Phylogenetic analyzes indicated that the dominant genetic type was belonging to a new and yet undefined species within the Ensifer genus. Interestingly, housekeeping gene phylogenies showed that this possibly new species is also present in another desert but in India. Phylogenetic analyses of nifH and nodC sequences showed high sequence conservation among the Moroccan strains belonging to the dominant genotype but high divergence with sequences from Indian isolates suggesting acquisition of symbiotic genes through Horizontal Gene Transfer. These desert rhizobia were capable of growing in media containing high salt concentrations, under high pH and most of the strains showed growth at 45°C. Only recovered from desert type of Biome, yet, this new taxon appears particularly adapted to such harsh environment.


Subject(s)
Acacia/microbiology , Desert Climate , Nitrogen Fixation , Rhizobium/classification , Rhizobium/physiology , Stress, Physiological , Carbon/chemistry , Hydrogen-Ion Concentration , Molecular Typing , Morocco , Nitrogen/chemistry , Phenotype , Phosphates/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...