Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Appl Physiol (1985) ; 129(3): 612-625, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32702269

ABSTRACT

Decompression sickness (DCS) is a complex and poorly understood systemic disease with wide interindividual resistance variability. We selectively bred rats with a threefold greater resistance to DCS than standard ones. To investigate possible physiological mechanisms underlying the resistance to DCS, including sex-related differences in these mechanisms, 15 males and 15 females resistant to DCS were compared with aged-matched standard Wistar males (n = 15) and females (n = 15). None of these individuals had been previously exposed to hyperbaric treatment. Comparison of the allelic frequencies of single nucleotide polymorphisms (SNPs) showed a difference of one SNP located on the X chromosome. Compared with nonresistant rats, the neutrophil-to-lymphocyte ratio and the plasmatic activity of coagulation factor X were significantly higher in DCS-resistant individuals regardless of their sex. The maximal relaxation elicited by sodium nitroprusside was lower in DCS-resistant individuals regardless of their sex. Males but not females resistant to DCS exhibited higher neutrophil and lymphocyte counts and higher prothrombin time but lower mitochondrial basal O2 consumption and citrate synthase activity. Principal components analysis showed that two principal components discriminate the DCS-resistant males but not females from the nonresistant ones. These components were loaded with activated partial thromboplastin time, monocyte-to-lymphocyte ratio, prothrombin time, factor X, and fibrinogen for PC1 and red blood cells count and neutrophils count for PC2. In conclusion, the mechanisms that drive the resistance to DCS appear different between males and females; lower coagulation tendency and enhanced inflammatory response to decompression stress might be key for resistance in males. The involvement of these physiological adaptations in resistance to DCS must now be confirmed.NEW & NOTEWORTHY By selective breeding of individuals resistant to decompression sickness (DCS) we previously obtained a rat model of inherited resistance to this pathology. Comparison of these individuals with nonresistant animals revealed differences in leukocyte counts, coagulation, and mitochondrial and vascular functions, but not resistance to oxidative stress. This study also reveals sex-related differences in the physiological changes associated with DCS resistance. A principal components analysis of our data allowed us to discriminate DCS-resistant males from standard ones, but not females. These differences represent possible mechanisms driving resistance to DCS. Although still far from the diver, this opens a pathway to future adaptation of personalized decompression procedures for "DCS-prone" individuals.


Subject(s)
Decompression Sickness , Diving , Animals , Blood Coagulation , Decompression , Female , Male , Rats , Rats, Wistar
2.
Environ Sci Pollut Res Int ; 27(7): 7736-7741, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31912397

ABSTRACT

In the context of new oil exploration/production areas, knowledge of the biological impact of dispersed oil in the deep-sea environment is essential. Hence, the aim of this study was to perform a comparison, at atmospheric pressure (0.1 MPa) and at a high hydrostatic pressure corresponding to 1000 m depth (10.1 MPa), of lethal concentrations (LC) on a model fish, Scophthalmus maximus, exposed to chemically dispersed oil. Fish were exposed concomitantly at 0.1 and 10.1 MPa using two exposure tanks connected to the same source tank thanks to a closed circuit. Acute toxicity was evaluated at 24 h through the determination of LC10 and LC50 (respectively, 10 and 50% of mortality) calculated from measured total petroleum hydrocarbon concentrations in the water. No statistical differences were observed between the LC10 at 0.1 MPa (46.1 mg L- 1) and the LC10 at 10.1 MPa (31.0 mg L- 1), whereas the LC50 of fish exposed to 0.1 MPa (90.8 mg L- 1) was significantly higher than the LC50 at 10.1 MPa (50.9 mg L- 1). These results clearly show an increase in oil toxicity under high hydrostatic pressure. This effect may be due to synergistic effects of pressure and oil contamination on fish energetic metabolism.


Subject(s)
Ecotoxicology , Environmental Monitoring , Petroleum Pollution/adverse effects , Water Pollutants, Chemical/toxicity , Animals , Flatfishes , Hydrocarbons/toxicity , Oceans and Seas
3.
J Physiol Biochem ; 76(1): 61-72, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31802431

ABSTRACT

Human diving is known to induce endothelial dysfunction. The aim of this study was to decipher the mechanism of ROS production during diving through the measure of mitochondrial calcium concentration, peroxynitrite, NO°, and superoxide towards better understanding of dive-induced endothelial dysfunction. Air diving simulation using bovine arterial endothelial cells (compression rate 101 kPa/min to 808 kPa, time at depth 45 min) was performed in a system allowing real-time fluorescent measurement. During compression, the cells showed increased mitochondrial superoxide, peroxynitrite, and mitochondrial calcium, and decreased NO° concentration. MnTBAP (peroxynitrite scavenger) suppressed superoxide, recovered NO° production and promoted stronger calcium influx. Superoxide and peroxynitrite were inhibited by L-NIO (eNOS inhibitor), but were further increased by spermine-NONOate (NO° donor). L-NIO induced stronger calcium influx than spermine-NONOate or simple diving. The superoxide and peroxynitrite were also inhibited by ruthenium red (blocker of mitochondrial Ca2+ uniporter), but were increased by CGP (an inhibitor of mitochondrial Na+-Ca2+ exchange). Reactive oxygen and nitrogen species changes are associated, together with calcium mitochondrial storage, with endothelial cell dysfunction during simulated diving. Peroxynitrite is involved in NO° loss, possibly through the attenuation of eNOS and by increasing superoxide which combines with NO° and forms more peroxynitrite. In the field of diving physiology, this study is the first to unveil a part of the cellular mechanisms of ROS production during diving and confirms that diving-induced loss of NO° is linked to superoxide and peroxynitrite.


Subject(s)
Calcium/metabolism , Diving/adverse effects , Endothelial Cells/metabolism , Mitochondria/metabolism , Nitric Oxide/metabolism , Peroxynitrous Acid/metabolism , Superoxides/metabolism , Animals , Aorta/cytology , Cattle , Cells, Cultured , Endothelial Cells/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology
4.
Front Physiol ; 9: 64, 2018.
Article in English | MEDLINE | ID: mdl-29545754

ABSTRACT

Introduction: Commercial divers, high altitude pilots, and astronauts are exposed to some inherent risk of decompression sickness (DCS), though the mechanisms that trigger are still unclear. It has been previously showed that diving may induce increased levels of serum angiotensin converting enzyme. The renin angiotensin aldosterone system (RAAS) is one of the most important regulators of blood pressure and fluid volume. The purpose of the present study was to control the influence of angiotensin II on the appearance of DCS. Methods: Sprague Dawley rats have been pre-treated with inhibitor of angiotensin II receptor type 1 (losartan; 10 mg/kg), angiotensin-converting enzyme (ACE) inhibitor (enalapril; 10 mg/kg), and calcium-entry blocker (nifedipine; 20 mg/kg). The experimental groups were treated for 4 weeks before exposure to hyperbaric pressure while controls were not treated. Seventy-five rats were subjected to a simulated dive at 1000 kPa absolute pressure for 45 min before starting decompression. Clinical assessment took place over a period of 60 min after surfacing. Blood samples were collected for measurements of TBARS, interleukin 6 (IL-6), angiotensin II (ANG II) and ACE. Results: The diving protocol induced 60% DCS in non-treated animals. This ratio was significantly decreased after treatment with enalapril, but not other vasoactive drugs. Enalapril did not change ANG II or ACE concentration, while losartant decreased post dive level of ACE but not ANG II. None of the treatment modified the effect of diving on TBARS and IL-6 values. Conclusion: Results suggests that the rennin angiotensin system is involved in a process of triggering DCS but this has to be further investigated. However, a vasorelaxation mediated process, which potentially could increase the load of inert gas during hyperbaric exposure, and antioxidant properties were excluded by our results.

5.
Med Sci Sports Exerc ; 49(12): 2433-2438, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28731987

ABSTRACT

INTRODUCTION: Decompression sickness (DCS) is a complex and poorly understood systemic disease caused by inadequate desaturation after a decrease of ambient pressure. Strong variability between individuals is observed for DCS occurrence. This raises questions concerning factors that may be involved in the interindividual variability of DCS occurrence. This study aimed to experimentally assess the existence of heritable factors involved in DCS occurrence by selectively breeding individuals resistant to DCS from a population stock of Wistar rats. METHODS: Fifty-two male and 52 female Wistar rats were submitted to a simulated air dive known to reliably induce about 63% DCS: compression was performed at 100 kPa·min up to 1000 kPa absolute pressure before a 45-min long stay. Decompression was performed at 100 kPa·min with three decompression stops: 5 min at 200 kPa, 5 min at 160 kPa, and 10 min at 130 kPa. Animals were observed for 1 h to detect DCS symptoms. Individuals without DCS were selected and bred to create a new generation, subsequently subjected to the same hyperbaric protocol. This procedure was repeated up to the third generation of rats. RESULTS: As reported previously, this diving profile induced 67% of DCS, and 33% asymptomatic animals in the founding population. DCS/asymptomatic ratio was not initially different between sexes, although males were heavier than females. In three generations, the outcome of the dive significantly changed from 33% to 67% asymptomatic rats, for both sexes. Interestingly, survival in females increased sooner than in males. CONCLUSIONS: This study offers evidence suggesting the inheritance of DCS resistance. Future research will focus on genetic and physiological comparisons between the initial strain and the new resistant population.


Subject(s)
Decompression Sickness/genetics , Diving/adverse effects , Genetic Predisposition to Disease , Animals , Female , Male , Rats, Wistar , Risk Factors , Selective Breeding , Sex Factors
6.
Eur J Appl Physiol ; 117(2): 335-344, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28110355

ABSTRACT

PURPOSE: Previous studies have shown vascular dysfunction of main conductance arteries and microvessels after diving. We aim to evaluate the impact of bubble formation on vascular function and haemostasis. To achieve this, we used a vibration preconditioning to influence bubble levels without changing any other parameters linked to the dive. METHODS: Twentty-six divers were randomly assigned to one of three groups: (1) the "vibrations-dive" group (VD; n = 9) was exposed to a whole-body vibration session 30 min prior the dive; (2) the "diving" group (D; n = 9) served as a control for the effect of the diving protocol; (3) The "vibration" protocol (V; n = 8) allowed us to assess the effect of vibrations without diving. Macro- and microvascular function was assessed for each subject before and after the dive, subsequently. Bubble grades were monitored with Doppler according to the Spencer grading system. Blood was taken before and after the protocol to assess any change of platelets or endothelial function. RESULTS: Bubble formation was lower in the VD than the diving group. The other measured parameters remained unchanged after the "vibration" protocol alone. Diving alone induced macrovascular dysfunction, and increased PMP and thrombin generation. Those parameters were no longer changed in the VD group. Conversely, a microvascular dysfunction persists despite a significant decrease of circulating bubbles. CONCLUSIONS: Finally, the results of this study suggest that macro- but not microvascular impairment results at least partly from bubbles, possibly related to platelet activation and generation of pro-coagulant microparticles.


Subject(s)
Decompression Sickness/physiopathology , Embolism, Air/blood , Microvessels/physiopathology , Adult , Blood Platelets/physiology , Cell-Derived Microparticles/physiology , Diving/physiology , Humans , Male , Middle Aged , Platelet Activation
7.
Respir Physiol Neurobiol ; 235: 40-44, 2017 01.
Article in English | MEDLINE | ID: mdl-27717909

ABSTRACT

Silvering, the last metamorphosis in the eel life cycle induces morphological and physiological modifications in yellow eels (sedentary stage). It pre-adapts them to cope with the extreme conditions they will encounter during their 6000-km spawning migration. A previous study showed that silver eels are able to cope with reactive oxygen species (ROS) over-production linked to an increase in aerobic metabolism during sustained swimming, but the question remains as to whether this mechanism is associated with silvering. A sustained swimming session decreased red muscle in vitro mitochondrial oxygen consumption (MO2) but increased ROS production in both eel stages. The swimming exercise used here was perhaps too intense to induce a stimulation of mitochondrial function or biogenesis even when antioxidant enzyme activities were unchanged. Pro-oxidant/antioxidant imbalance by lipid peroxidation increased in yellow but significantly decreased in silver eels. The silvering process therefore appears to allow a pre-adaptation of red muscle radical metabolism to the demands of spawning migration.


Subject(s)
Antioxidants/metabolism , Eels/growth & development , Eels/metabolism , Metamorphosis, Biological/physiology , Reactive Oxygen Species/metabolism , Swimming/physiology , Animals , Citrate (si)-Synthase/metabolism , Female , Fish Proteins/metabolism , Lipid Peroxidation , Malondialdehyde/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology
8.
Environ Sci Pollut Res Int ; 24(3): 3054-3062, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27854059

ABSTRACT

Data on the biological impact of oil dispersion in deep-sea environment are scarce. Hence, the aim of this study was to evaluate the potential interest of a pressure challenge as a new experimental approach for the assessment of consequences of chemically dispersed oil, followed by a high hydrostatic pressure challenge. This work was conducted on a model fish: juvenile Dicentrarchus labrax. Seabass were exposed for 48 h to dispersant alone (nominal concentration (NC) = 4 mg L-1), mechanically dispersed oil (NC = 80 mg L-1), two chemically dispersed types of oil (NC = 50 and 80 mg L-1 with a dispersant/oil ratio of 1/20), or kept in clean seawater. Fish were then exposed for 30 min at a simulated depth of 1350 m, corresponding to pressure of 136 absolute atmospheres (ATA). The probability of fish exhibiting normal activity after the pressure challenge significantly increased from 0.40 to 0.55 when they were exposed to the dispersant but decreased to 0.26 and 0.11 in the case of chemical dispersion of oil (at 50 and 80 mg L-1, respectively). The chemical dispersion at 80 mg L-1 also induced an increase in probability of death after the pressure challenge (from 0.08 to 0.26). This study clearly demonstrates the ability of a pressure challenge test to give evidence of the effects of a contaminant on the capacity of fish to face hydrostatic pressure. It opens new perspectives on the analysis of the biological impact of chemical dispersion of oil at depth, especially on marine species performing vertical migrations.


Subject(s)
Bass , Petroleum Pollution , Adaptation, Physiological , Animals , Hydrostatic Pressure , Motor Activity , Petroleum , Seawater , Water Pollutants, Chemical/toxicity
9.
J Appl Physiol (1985) ; 120(7): 784-91, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26769950

ABSTRACT

Studies conducted in divers indicate that endothelium function is impaired following a dive even without decompression sickness (DCS). Our previous experiment conducted on rat isolated vessels showed no differences in endothelium-dependent vasodilation after a simulated dive even in the presence of DCS, while contractile response to phenylephrine was progressively impaired with increased decompression stress. This study aimed to further investigate the effect of DCS on vascular smooth muscle. Thirty-two male Sprague-Dawley rats were submitted to the same hyperbaric protocol and classified according to the severity of DCS: no-DCS (without clinical symptoms), mild-DCS, or severe-DCS (dead within 1 h). A control group remained at atmospheric pressure. Isometric tension was measured in rings of abdominal aorta and mesenteric arteries. Single dose contraction was assessed with KCl solution. Dose-response curves were obtained with phenylephrine and endothelin-1. Phenylephrine-induced contraction was observed in the presence of antioxidant tempol. Additionally, plasma concentrations of angiotensin II, angiotensin-converting enzyme, and thiobarbituric acid reactive substances (TBARS) were assessed. Response to phenylephrine was impaired only among mild-DCS in both vessels. Dose-response curves to endothelin-1 were impaired after mild-DCS in mesenteric and severe-DCS in aorta. KCl-induced contraction was affected after hyperbaric exposure regardless of DCS status in aorta only. These results confirm postdive vascular dysfunction is dependent on the type of vessel. It further evidenced that vascular dysfunction is triggered by DCS rather than by diving itself and suggest the influence of circulating factor/s. Diving-induced impairment of the L-type voltage-dependent Ca(2+) channels and/or influence of renin-angiotensin system is proposed.


Subject(s)
Aorta/physiology , Decompression Sickness/physiopathology , Mesenteric Arteries/physiology , Muscle, Smooth, Vascular/physiology , Vasoconstriction/physiology , Angiotensin II/metabolism , Animals , Antioxidants/metabolism , Aorta/drug effects , Aorta/metabolism , Decompression Sickness/metabolism , Diving/physiology , Endothelin-1/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Peptidyl-Dipeptidase A/metabolism , Phenylephrine/pharmacology , Rats , Rats, Sprague-Dawley , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Thiobarbituric Acid Reactive Substances/metabolism , Vasoconstriction/drug effects , Vasodilation/drug effects , Vasodilation/physiology
10.
J Appl Physiol (1985) ; 119(12): 1355-62, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26472863

ABSTRACT

Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity.


Subject(s)
Antioxidants/metabolism , Decompression Sickness/physiopathology , Endothelium, Vascular/physiopathology , Acetylcysteine/pharmacology , Angiotensin II/metabolism , Animals , Ascorbic Acid/pharmacology , Cell Death/drug effects , Cell Survival/drug effects , Cells, Cultured , Diving/injuries , Glutathione/metabolism , Male , Nitric Oxide/metabolism , Oxidative Stress , Peptidyl-Dipeptidase A/metabolism , Peroxynitrous Acid/metabolism , Rats , Rats, Sprague-Dawley , Superoxides/metabolism , Thiobarbituric Acid Reactive Substances
11.
J Appl Physiol (1985) ; 118(10): 1234-9, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25792711

ABSTRACT

Literature highlights the involvement of disseminated thrombosis in the pathophysiology of decompression sickness (DCS). We examined the effect of several antithrombotic treatments targeting various pathways on DCS outcome: acetyl salicylate, prasugrel, abciximab, and enoxaparin. Rats were randomly assigned to six groups. Groups 1 and 2 were a control nondiving group (C; n = 10) and a control diving group (CD; n = 30). Animals in Groups 3 to 6 were treated before hyperbaric exposure (HBE) with either prasugrel (n = 10), acetyl salicylate (n = 10), enoxaparin (n = 10), or abciximab (n = 10). Blood samples were taken for platelet factor 4 (PF4), thiobarbituric acid reactive substances (TBARS), and von Willebrand factor analysis. Onset of DCS symptoms and death were recorded during a 60-min observation period after HBE. Although we observed fewer outcomes of DCS in all treated groups compared with the CD, statistical significance was reached in abciximab only (20% vs. 73%, respectively, P = 0.007). We also observed significantly higher levels of plasmatic PF4 in abciximab (8.14 ± 1.40 ng/ml; P = 0.004) and enoxaparin groups (8.01 ± 0.80 ng/ml; P = 0.021) compared with the C group (6.45 ± 1.90 ng/ml) but not CD group (8.14 ± 1.40 ng/ml). Plasmatic levels of TBARS were significantly higher in the CD group than the C group (49.04 ± 11.20 µM vs. 34.44 ± 5.70 µM, P = 0.002). This effect was prevented by all treatments. Our results suggest that abciximab pretreatment, a powerful glycoprotein IIb/IIIa receptor antagonist, has a strong protective effect on decompression risk by significantly improving DCS outcome. Besides its powerful inhibitory action on platelet aggregation, we suggest that abciximab could also act through its effects on vascular function, oxidative stress, and/or inflammation.


Subject(s)
Decompression Sickness/drug therapy , Decompression Sickness/physiopathology , Platelet Aggregation Inhibitors/therapeutic use , Platelet Glycoprotein GPIIb-IIIa Complex/antagonists & inhibitors , Abciximab , Animals , Antibodies, Monoclonal/therapeutic use , Hyperbaric Oxygenation , Immunoglobulin Fab Fragments/therapeutic use , Male , Platelet Factor 4/analysis , Rats , Rats, Sprague-Dawley , Thiobarbituric Acid Reactive Substances/metabolism , von Willebrand Factor/analysis
12.
Diving Hyperb Med ; 44(3): 154-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25311322

ABSTRACT

INTRODUCTION: Splenic platelets have been recognized to have a greater prothrombotic potential than others platelets. We studied whether platelets released by splenic contraction could influence the severity and outcome of decompression sickness (DCS) and bubble-induced platelet activation. METHODS: Sixteen, male Sprague-Dawley rats were randomly assigned to either a control or a splenectomized group. Both groups were compressed to 1,000 kPa (90 metres' sea water) for 45 min while breathing air before staged decompression (5 min at 200 kPa, 5 min at 160 kPa and 10 min at 130 kPa). The onset time of DCS symptoms and of death were recorded during a 60-min observation period post dive. Parameters measured were platelet factor 4 (PF4) for platelet activation, thiobarbituric acid reactive substances (TBARS) for oxidative stress status and Von Willebrand factor (VWf) for endothelial activation. RESULTS: There were no differences between the groups in DCS outcome or in PF4, TBARS and VWf concentrations. CONCLUSION: These results do not support that the spleen and its exchangeable platelet pool is involved in DCS pathogenesis in a rat model, invalidating the hypothesis that increased decompression-induced platelet aggregation could be influenced by splenic contraction and then play a role in DCS outcome.


Subject(s)
Decompression Sickness/blood , Platelet Activation/physiology , Platelet Factor 4/blood , Spleen/physiology , Thiobarbituric Acid Reactive Substances/analysis , von Willebrand Factor/analysis , Animals , Disease Models, Animal , Endothelium, Vascular/physiology , Male , Oxidative Stress , Random Allocation , Rats , Rats, Sprague-Dawley , Spleen/cytology , Splenectomy
13.
Appl Physiol Nutr Metab ; 39(11): 1280-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25181356

ABSTRACT

Vascular bubble formation results from supersaturation during inadequate decompression contributes to endothelial injuries, which form the basis for the development of decompression sickness (DCS). Risk factors for DCS include increased age, weight-fat mass, decreased maximal oxygen uptake, chronic diseases, dehydration, and nitric oxide (NO) bioavailability. Production of NO is often affected by diving and its expression-activity varies between the genders. Little is known about the influence of sex on the risk of DCS. To study this relationship we used an animal model of Nω-nitro-l-arginine methyl ester (l-NAME) to induce decreased NO production. Male and female rats with diverse ages and weights were divided into 2 groups: treated with l-NAME (in tap water; 0.05 mg·mL(-1) for 7 days) and a control group. To control the distribution of nitrogen among tissues, 2 different compression-decompression protocols were used. Results showed that l-NAME was significantly associated with increased DCS in female rats (p = 0.039) only. Weight was significant for both sexes (p = 0.01). The protocol with the highest estimated tissue pressures in the slower compartments was 2.6 times more likely to produce DCS than the protocol with the highest estimated tissue pressures in faster compartments. The outcome of this study had significantly different susceptibility to DCS after l-NAME treatment between the sexes, while l-NAME per se had no effect on the likelihood of DCS. The analysis also showed that for the appearance of DCS, the most significant factors were type of protocol and weight.


Subject(s)
Decompression Sickness/prevention & control , NG-Nitroarginine Methyl Ester/pharmacology , Animals , Disease Models, Animal , Female , Male , Nitric Oxide/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Risk Factors
14.
Microsc Microanal ; 19(3): 608-16, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23590810

ABSTRACT

How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.


Subject(s)
Decompression Sickness/pathology , Diving , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence/instrumentation , Gases , Hydrostatic Pressure
15.
Respir Physiol Neurobiol ; 176(3): 118-22, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21316488

ABSTRACT

In order to have a general view of metabolic requirements during swimming, in vitro aerobic and anaerobic fluxes were measured in red and white muscles from silver eels and yellow eels which differ in activity levels and nutritional states. These measurements were performed in control eels and after a 4 day swimming session (70% U(crit) in yellow eels, 80% U(crit) in silver eels). A swimming session significantly increases U(crit) from 12% to 18%, depending on the stage, with a significantly higher in vitro energy cost during the yellow stage at the muscle level. In vitro, the swimming session brings about a gain in anaerobic capacities rather than in aerobic ones. Some in vivo hypotheses are proposed.


Subject(s)
Anguilla/metabolism , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Physical Conditioning, Animal , Swimming/physiology , Animals , Eels , Physical Conditioning, Animal/methods
16.
Respir Physiol Neurobiol ; 172(3): 201-5, 2010 Jul 31.
Article in English | MEDLINE | ID: mdl-20566309

ABSTRACT

This paper deals with the effects of exercise training on oxygen consumption (MO(2)) and ROS metabolism in the red muscle of trained and untrained female silver eels. Their critical swimming speed (U(crit)) was determined before and after a 4-day training (10h of swimming at 70% of U(crit) and 14 h at 50%, every day). The U(crit) of trained eels increased significantly (by about 7%). The in vitro MO(2) and ROS production by the red fibres were higher (not significant) in trained than in untrained eels, but the ROS production/MO(2) ratio was alike in both groups. The antioxidant-enzyme activities and lipoperoxidation index in trained eels were both lower than those of the untrained ones. These biochemical changes related to the increase in U(crit) suggest that such a training session could maintained or even increased aerobic power of the red muscle without deleterious impact by ROS. These regulations could play a role in the eel's swimming performance efficiency.


Subject(s)
Eels/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Reactive Oxygen Species/metabolism , Respiratory Mechanics/physiology , Animals , Catalase/metabolism , Citrate (si)-Synthase/metabolism , Female , Glutathione Peroxidase/metabolism , Lipid Peroxidation/physiology , Malondialdehyde/metabolism , Muscle Proteins/metabolism , Oxygen Consumption/physiology , Physical Endurance/physiology , Superoxide Dismutase/metabolism , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...