Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36899663

ABSTRACT

The kiwi is a highly insect-pollinated dependent crop and is the cornerstone of the Greek agricultural sector, rendering the country as the fourth biggest kiwi producer worldwide, with an expected increase in national production the following years. This extensive transformation of the Greek arable land to Kiwi monocultures in combination with a worldwide shortage of pollination services due to the wild pollinators' decline raises questions for the provision of pollination services, and consequently, for the sustainability of the sector. In many countries, this shortage of pollination services has been addressed by the installation of pollination services markets, such as those in the USA and France. Therefore, this study tries to identify the barriers towards the implementation of a pollination services market in Greek kiwi production systems by conducting two separate quantitative surveys, one for beekeepers and one for kiwi producers. The findings showed a strong basis for further collaboration between the two stakeholders, as both of them acknowledge the importance of pollination services. Moreover, the farmers' willingness to pay and the beekeepers' willingness to receive of the beekeepers regarding the renting of their hives for pollination services were examined.

2.
J Exp Bot ; 74(16): 4770-4788, 2023 09 02.
Article in English | MEDLINE | ID: mdl-36779607

ABSTRACT

Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important, but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes.


Subject(s)
Ecosystem , Water , Humans , Water/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Agriculture
3.
Sensors (Basel) ; 18(7)2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29966267

ABSTRACT

Global wheat production reached 754.8 million tons in 2017, according to the FAO database. While wheat is considered as a staple food for many populations across the globe, mapping wheat could be an effective tool to achieve the SDG2 sustainable development goal—End Hunger and Secure Food Security. In Lebanon, this crop is supported financially, and sometimes technically, by the Lebanese government. However, there is a lack of statistical databases, at both national and regional scales, as well as critical information much needed in the subsidy and compensation system. In this context, this study proposes an innovative approach, named Simple and Effective Wheat Mapping Approach (SEWMA), to map the winter wheat areas grown in the Bekaa plain, the primary wheat production area in Lebanon, in the years of 2016 and 2017. The proposed methodology is a tree-like approach relying on the Normalized Difference Vegetation Index (NDVI) values of four-month period that coincides with several phenological stages of wheat (i.e., tillering, stem extension, heading, flowering and ripening). The usage of the freely available Sentinel-2 imageries, with a high spatial (10 m) and temporal (5 days) resolutions, was necessary, particularly due to the small sized and overlapped plots encountered in the study area. Concerning the wheat areas, results show that there was a decrease from 11,063 ± 1309 ha in 2016 to 7605 ± 1184 in 2017. When SEWMA was applied using 2016 ground truth data, the overall accuracy reached 87.0% on 2017 data, whereas, when implemented using 2017 ground truth data, the overall accuracy was 82.6% on 2016 data. The novelty resides in executing early classification output (up to six weeks before harvest) as well as distinguishing wheat from other winter cereal crops with similar NDVI yearly profiles (i.e., barley and triticale). SEWMA offers a simple, yet effective and budget-saving approach providing early-season classification information, very crucial to decision support systems and the Lebanese government concerning, but not limited to, food production, trade, management and agricultural financial support.

4.
Environ Sci Pollut Res Int ; 23(4): 3658-70, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26498803

ABSTRACT

Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.


Subject(s)
Climate Change , Crops, Agricultural/growth & development , Fertilizers/analysis , Helianthus/growth & development , Nitrogen/analysis , Biomass , Plant Leaves/growth & development
5.
Environ Manage ; 46(6): 862-77, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21113782

ABSTRACT

Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models.


Subject(s)
Agriculture/economics , Models, Biological , Models, Economic , Agriculture/methods , Conservation of Natural Resources , Environment , Environmental Policy
SELECTION OF CITATIONS
SEARCH DETAIL
...