Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Des Monomers Polym ; 25(1): 64-74, 2022.
Article in English | MEDLINE | ID: mdl-35341119

ABSTRACT

Biocompatible and biodegradable polymers are widely used in the medical field. In some cases, the biopolymer is accompanied by an active drug, which is delivered locally in a controlled manner in order to improve the healing conditions. Poly([R,S]-3,3-dimethylmalic acid) (PDMMLA) is a synthetic amphiphilic biodegradable polymer, which unlike PLA, can be chemically modified to adapt hydrophilic/hydrophobic balance, degradation kinetics, and physicochemical and biological properties. It may contain a lateral alkyl group or a functional group for coupling bioactive molecules to release during its degradation. In this work, we realized the chemical grafting of paclitaxel (PTX), a microtubule stabilizing anti-cancer agent on PDMMLA derivatives bio-polyesters following a Steglich esterification protocol. 1D and 2D NMR analyses validated the reaction with 10% (using 0.1 equivalent) of PTX on the copolymer PDMMLAH40-co-Hex60 (PDMMLA 40/60) and a maximal PTX grafting rate of 55% on the homopolymer PDMMLAH (PDMMLA 100/0). In vitro adhesion and cytotoxicity assays were carried out on HUVEC cells with PDMMLA 40/60, PDMMLA-PTX 30/10/60 and PLA.

2.
Colloids Surf B Biointerfaces ; 193: 111031, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32408257

ABSTRACT

Cardiovascular diseases are the leading cause of death around the world according to the World Health Organization. In-stent restenosis is an inflammatory response of the immune system to endovascular stent implantation in atherosclerotic patients. Biocompatible and biodegradable polymers are of great interest in this field in order to limit the side effects of stent treatments. Poly([R,S]-3,3-dimethylmalic acid) (PDMMLA) is a new biodegradable statistical polyester which presents promising properties as a stent coating. In this work, we studied by dynamic tensiometry, the adhesion of extracellular matrix proteins (bovine serum albumin, fibronectin, fibrinogen, and vitronectin) and plasma membrane proteoglycan (syndecan-4) on three PDMMLA derivatives with different hydrophilicity levels. The results show that proteins have different adhesion profiles and affinity on these surfaces. They show similar behavior on the most hydrophilic surface, making hydrophilic, ionic and hydrogen type bonds. Then we compared each protein's individual profile to that of a mixture of all studied proteins. The comparison shows that vitronectin and syndecan-4 are the quantitatively dominating proteins adsorbed by specific interactions. Based on the results from previous studies, this work allowed us to identify the most important PDMMLA surface as a promising biomaterial for bioactive stent-coating.


Subject(s)
Malates/chemistry , Polymers/chemistry , Adsorption , Animals , Cattle , Fibrinogen/chemistry , Fibronectins/chemistry , Molecular Structure , Particle Size , Polymers/chemical synthesis , Serum Albumin, Bovine/chemistry , Surface Tension , Syndecan-4/chemistry , Vitronectin/chemistry
3.
RSC Adv ; 10(54): 32602-32608, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-35516467

ABSTRACT

Racemic α,α,ß-trisubstituted ß-lactones are the monomer units of poly((R,S)-3,3-dimethylmalic acid) (PDMMLA) derivatives, new biopolyesters showing great potential for biomedical applications. Using different groups during the synthesis of these ß-lactones allows a tailored synthesis of PDMMLA copolymers with adjustable hydrophilic/phobic ratio. The degradation kinetics of the employed material is one of the most important criteria in the development of bioresorbable implants. The degradation time of PDMMLA derivatives can be controlled using different ß-lactones of different hydrophilicity levels during the polymerization stage. Furthermore, PDMMLA has chemically available groups on its side chain allowing to graft functional groups on the polymer via covalent bonds. In this work, following a Steglich esterification protocol, the chemical grafting of cholesterol was carried out on a PDMMLA monomer derived ß-lactone as well as on homopolymer PDMMLA-H, and copolymer PDMMLAH40-co-Hex60 (PDMMLA 40/60). Nuclear magnetic resonance (NMR) analyses of the products confirm and quantify the grafting ratio. 100% of cholesterol grafting has been realized on the homopolymer PDMMLA-H giving PDMMLA-Chol, and 10% on the copolymer PDMMLA 40/60, giving PDMMLAH30-ter-Chol10-ter-Hex60 (PDMMLA-Chol 30/10/60) as wished. Fourier-transform infrared (FT-IR) spectra, elemental analysis on the ß-lactones and thermogravimetric analyses on the polymers also confirm the chemical modification of the products.

4.
J Chem Ecol ; 41(6): 557-66, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26018617

ABSTRACT

All individuals in social insect colonies benefit from being informed about the presence and fertility state of reproducers. This allows the established reproductive individuals to maintain their reproductive monopoly without the need for physical control, and the non-reproductive individuals to make appropriate reproductive choices. Here, we studied whether fertility signaling is responsible for the partitioning of reproduction in the ant Neoponera apicalis. This species forms small colonies from one single-mated queen, with workers establishing reproductive hierarchies when hopelessly queenless. Previous studies identified putative fertility signals, particularly the hydrocarbon 13-methylpentacosane (13-MeC25), and have shown that precise status discrimination based on these signals could be involved in the regulation of reproductive activities. Here, we extend these findings and reveal that all individuals, be they queens or workers, differ in their cuticular hydrocarbon profile according to fertility state. Proportions of 13-MeC25 were a strong predictor of an individual's ovarian activity, and could, thus, advertise the established reproducer(s) in both queenright and queenless conditions. Furthermore, this compound might play a key role in the establishment of the reproductive hierarchy, since workers with low fertility at the onset of hierarchy formation already have relatively high amounts of 13-MeC25. Dyadic encounters showed that individuals with experimentally increased amounts of 13-MeC25 triggered less agonistic interactions from top rankers, in accord with them "advertising" higher status. Thus, these bioassays supported the use of 13-MeC25 by competing ants. This simple recognition system potentially allows permanent regulation of partitioning of reproduction in this species.


Subject(s)
Ants/physiology , Hydrocarbons/metabolism , Pheromones/metabolism , Animals , Female , Fertility , Reproduction , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...