Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Blood ; 2024 04 30.
Article in English | MEDLINE | ID: mdl-38687605

ABSTRACT

Mutations in UBA1, which are disease-defining for VEXAS syndrome, have been reported in patients diagnosed with myelodysplastic syndromes (MDS). Here, we define the prevalence and clinical associations of UBA1 mutations in a representative cohort of patients with MDS. Digital droplet PCR profiling of a selected cohort of 375 male patients lacking MDS disease-defining mutations or established WHO disease classification identified 28 patients (7%) with UBA1 p.M41T/V/L mutations. Using targeted sequencing of UBA1 in a representative MDS cohort (n=2,027), we identified an additional 27 variants in 26 patients (1%), which we classified as likely/pathogenic (n=12) and unknown significance (n=15). Among the total 40 patients with likely/pathogenic variants (2%), all were male and 63% were classified by WHO2016 as MDS-MLD/SLD. Patients had a median of one additional myeloid gene mutation, often in TET2 (n=12), DNMT3A (n=10), ASXL1 (n=3), or SF3B1 (n=3). Retrospective clinical review where possible showed that 83% (28/34) UBA1-mutant cases had VEXAS-associated diagnoses or inflammatory clinical presentation. The prevalence of UBA1-mutations in MDS patients argues for systematic screening for UBA1 in the management of MDS.

2.
Int J Cancer ; 154(9): 1652-1668, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38180088

ABSTRACT

Patients with myelodysplastic neoplasms (MDS) are classified according to the risk of acute myeloid leukemia transformation. Some lower-risk MDS patients (LR-MDS) progress rapidly despite expected good prognosis. Using diagnostic samples, we aimed to uncover the mechanisms of this accelerated progression at the transcriptome level. RNAseq was performed on CD34+ ribodepleted RNA samples from 53 LR-MDS patients without accelerated progression (stMDS) and 8 who progressed within 20 months (prMDS); 845 genes were differentially expressed (ІlogFCІ > 1, FDR < 0.01) between these groups. stMDS CD34+ cells exhibited transcriptional signatures of actively cycling, megakaryocyte/erythrocyte lineage-primed progenitors, with upregulation of cell cycle checkpoints and stress pathways, which presumably form a tumor-suppressing barrier. Conversely, cell cycle, DNA damage response (DDR) and energy metabolism-related pathways were downregulated in prMDS samples, whereas cell adhesion processes were upregulated. Also, prMDS samples showed high levels of aberrant splicing and global lncRNA expression that may contribute to the attenuation of DDR pathways. We observed overexpression of multiple oncogenes and diminished differentiation in prMDS; the expression of ZEB1 and NEK3, genes not previously associated with MDS prognosis, might serve as potential biomarkers for LR-MDS progression. Our 19-gene DDR signature showed a significant predictive power for LR-MDS progression. In validation samples (stMDS = 3, prMDS = 4), the key markers and signatures retained their significance. Collectively, accelerated progression of LR-MDS appears to be associated with transcriptome patterns of a quiescent-like cell state, reduced lineage differentiation and suppressed DDR, inherent to CD34+ cells. The attenuation of DDR-related gene-expression signature may refine risk assessment in LR-MDS patients.


Subject(s)
Myelodysplastic Syndromes , Neoplasms , Humans , Transcriptome , Cell Adhesion , Myelodysplastic Syndromes/genetics , Cell Cycle , DNA Repair , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism
3.
Biomed Pharmacother ; 170: 115930, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039756

ABSTRACT

INTRODUCTION: To date, no chemoresistance predictors are included in acute myeloid leukaemia (AML) prognostic scoring systems to distinguish responding and refractory AML patients prior to chemotherapy. ABC transporters have been described as altering AML chemosensitivity; however, a relevant study investigating their role at various molecular levels was lacking. METHODS: Gene expression, genetic variants, methylation and activity of ABCA2, ABCA5, ABCB1, ABCB6, ABCC1, ABCC3 and ABCG2 were analysed in AML blasts and healthy myeloblasts. Differences between responding and refractory AML in a cohort of 113 patients treated with 3 + 7 induction therapy were explored. RESULTS: ABCC3 variant rs2301837 (p = 0.049), ABCG2 variant rs11736552 (p = 0.044), higher ABCA2 (p = 0.021), ABCC1 (p = 0.017), and ABCG2 expression (p = 0.023) and a higher number of concurrently overexpressed transporters (p = 0.002) were predictive of treatment failure by multivariate analysis. Expression of ABCA5 (p = 0.003), ABCB6 (p = 0.001) and ABCC3 (p < 0.0001) increased significantly after chemotherapy. Higher ABCG2 promoter methylation correlated with lower ABCG2 expression (p = 0.0001). ABCC1 was identified as the most active transporter in AML blasts by functional analysis. CONCLUSIONS: ABC transporters, especially ABCC1 seem to contribute substantially to AML chemoresistance. A detailed understanding of chemoresistance mechanisms and the clinical implications of chemosensitivity predictors may lead to alternative therapeutic approaches for AML patients with unveiled chemoresistance signatures.


Subject(s)
ATP-Binding Cassette Transporters , Leukemia, Myeloid, Acute , Humans , ATP-Binding Cassette Transporters/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Treatment Failure , Drug Resistance, Neoplasm/genetics
4.
Mol Oncol ; 17(12): 2565-2583, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37408496

ABSTRACT

Mutations in the splicing factor 3b subunit 1 (SF3B1) gene are frequent in myelodysplastic neoplasms (MDS). Because the splicing process is involved in the production of circular RNAs (circRNAs), we investigated the impact of SF3B1 mutations on circRNA processing. Using RNA sequencing, we measured circRNA expression in CD34+ bone marrow MDS cells. We defined circRNAs deregulated in a heterogeneous group of MDS patients and described increased circRNA formation in higher-risk MDS. We showed that the presence of SF3B1 mutations did not affect the global production of circRNAs; however, deregulation of specific circRNAs was observed. Particularly, we demonstrated that strong upregulation of circRNAs processed from the zinc finger E-box binding homeobox 1 (ZEB1) transcription factor; this upregulation was exclusive to SF3B1-mutated patients and was not observed in those with mutations in other splicing factors or other recurrently mutated genes, or with other clinical variables. Furthermore, we focused on the most upregulated ZEB1-circRNA, hsa_circ_0000228, and, by its knockdown, we demonstrated that its expression is related to mitochondrial activity. Using microRNA analyses, we proposed miR-1248 as a direct target of hsa_circ_0000228. To conclude, we demonstrated that mutated SF3B1 leads to deregulation of ZEB1-circRNAs, potentially contributing to the defects in mitochondrial metabolism observed in SF3B1-mutated MDS.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , RNA Splicing Factors/genetics , RNA, Circular/genetics , Myelodysplastic Syndromes/genetics , Mutation/genetics , Transcription Factors/genetics , Phosphoproteins/genetics
5.
Arthritis Rheumatol ; 75(7): 1285-1290, 2023 07.
Article in English | MEDLINE | ID: mdl-36762418

ABSTRACT

OBJECTIVE: Somatic mutations in UBA1 have recently been causally linked to a severe adult-onset inflammatory condition referred to as VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Ubiquitin-activating enzyme E1 (UBA-1) is of fundamental importance to the modulation of ubiquitin homeostasis and to the majority of downstream ubiquitylation-dependent cellular processes. Direct sequencing analysis of exon 3 containing the prevalent variants p.Met41Leu, p.Met41Val, and/or p.Met41Thr is usually used to confirm the disease-associated mutations. METHODS: We studied the clinical, biochemical, and molecular genetic characteristics of a 59-year-old man with a 2-year history of arthritis, fever, night sweats, nonspecific skin rash, lymphadenopathy, and myelodysplastic syndrome with multilineage dysplasia. RESULTS: The mutational analysis revealed a previously undescribed sequence variant c.1430G>C in exon 14 (p.Gly477Ala) in the gene UBA1. In vitro enzymatic analyses showed that p.Gly477Ala led to both decreased E1 ubiquitin thioester formation and E2 enzyme charging. CONCLUSION: We report a case of a patient of European ancestry with clinical manifestations of VEXAS syndrome associated with a newly identified dysfunctional UBA-1 enzyme variant. Due to the patient's insufficient response to various immunosuppressive treatments, allogeneic hematopoietic stem cell transplantation was performed, which resulted in significant improvement of clinical and laboratory manifestations of the disease.


Subject(s)
Myelodysplastic Syndromes , Ubiquitin-Activating Enzymes , Adult , Male , Humans , Middle Aged , Ubiquitin-Activating Enzymes/genetics , Patients , Ubiquitins , Mutation
6.
Leukemia ; 36(7): 1898-1906, 2022 07.
Article in English | MEDLINE | ID: mdl-35505182

ABSTRACT

Patients with lower-risk myelodysplastic syndromes (LR-MDS) have a generally favorable prognosis; however, a small proportion of cases progress rapidly. This study aimed to define molecular biomarkers predictive of LR-MDS progression and to uncover cellular pathways contributing to malignant transformation. The mutational landscape was analyzed in 214 LR-MDS patients, and at least one mutation was detected in 137 patients (64%). Mutated RUNX1 was identified as the main molecular predictor of rapid progression by statistics and machine learning. To study the effect of mutated RUNX1 on pathway regulation, the expression profiles of CD34 + cells from LR-MDS patients with RUNX1 mutations were compared to those from patients without RUNX1 mutations. The data suggest that RUNX1-unmutated LR-MDS cells are protected by DNA damage response (DDR) mechanisms and cellular senescence as an antitumor cellular barrier, while RUNX1 mutations may be one of the triggers of malignant transformation. Dysregulated DDR and cellular senescence were also observed at the functional level by detecting γH2AX expression and ß-galactosidase activity. Notably, the expression profiles of RUNX1-mutated LR-MDS resembled those of higher-risk MDS at diagnosis. This study demonstrates that incorporating molecular data improves LR-MDS risk stratification and that mutated RUNX1 is associated with a suppressed defense against LR-MDS progression.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/pathology , Prognosis
7.
Cancer Genomics Proteomics ; 19(2): 205-228, 2022.
Article in English | MEDLINE | ID: mdl-35181589

ABSTRACT

BACKGROUND/AIM: Prediction of response to azacitidine (AZA) treatment is an important challenge in hematooncology. In addition to protein coding genes (PCGs), AZA efficiency is influenced by various noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs), circular RNAs (circRNAs), and transposable elements (TEs). MATERIALS AND METHODS: RNA sequencing was performed in patients with myelodysplastic syndromes or acute myeloid leukemia before AZA treatment to assess contribution of ncRNAs to AZA mechanisms and propose novel disease prediction biomarkers. RESULTS: Our analyses showed that lncRNAs had the strongest predictive potential. The combined set of the best predictors included 14 lncRNAs, and only four PCGs, one circRNA, and no TEs. Epigenetic regulation and recombinational repair were suggested as crucial for AZA response, and network modeling defined three deregulated lncRNAs (CTC-482H14.5, RP11-419K12.2, and RP11-736I24.4) associated with these processes. CONCLUSION: The expression of various ncRNAs can influence the effect of AZA and new ncRNA-based predictive biomarkers can be defined.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , RNA, Long Noncoding , Azacitidine/pharmacology , Azacitidine/therapeutic use , Epigenesis, Genetic , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , RNA, Long Noncoding/genetics
8.
Int J Oncol ; 60(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-34958107

ABSTRACT

Hypoplastic myelodysplastic syndrome (hMDS) and aplastic anemia (AA) are rare hematopoietic disorders characterized by pancytopenia with hypoplastic bone marrow (BM). hMDS and idiopathic AA share overlapping clinicopathological features, making a diagnosis very difficult. The differential diagnosis is mainly based on the presence of dysgranulopoiesis, dysmegakaryocytopoiesis, an increased percentage of blasts, and abnormal karyotype, all favouring the diagnosis of hMDS. An accurate diagnosis has important clinical implications, as the prognosis and treatment can be quite different for these diseases. Patients with hMDS have a greater risk of neoplastic progression, a shorter survival time and a lower response to immunosuppressive therapy compared with patients with AA. There is compelling evidence that these distinct clinical entities share a common pathophysiology based on the damage of hematopoietic stem and progenitor cells (HSPCs) by cytotoxic T cells. Expanded T cells overproduce proinflammatory cytokines (interferon­Î³ and tumor necrosis factor­α), resulting in decreased proliferation and increased apoptosis of HSPCs. The antigens that trigger this abnormal immune response are not known, but potential candidates have been suggested, including Wilms tumor protein 1 and human leukocyte antigen class I molecules. Our understanding of the molecular pathogenesis of these BM failure syndromes has been improved by next­generation sequencing, which has enabled the identification of a large spectrum of mutations. It has also brought new challenges, such as the interpretation of variants of uncertain significance and clonal hematopoiesis of indeterminate potential. The present review discusses the main clinicopathological differences between hMDS and acquired AA, focuses on the molecular background and highlights the importance of molecular testing.


Subject(s)
Anemia, Hemolytic, Autoimmune/etiology , Bone Marrow Failure Disorders/etiology , Myelodysplastic-Myeloproliferative Diseases/etiology , Anemia, Hemolytic, Autoimmune/genetics , Bone Marrow Failure Disorders/genetics , Humans , Immunity/genetics , Immunity/immunology , Myelodysplastic-Myeloproliferative Diseases/genetics , Prognosis
9.
NEJM Evid ; 1(7): EVIDoa2200008, 2022 Jul.
Article in English | MEDLINE | ID: mdl-38319256

ABSTRACT

BACKGROUND: Risk stratification and therapeutic decision-making for myelodysplastic syndromes (MDS) are based on the International Prognostic Scoring System­Revised (IPSS-R), which considers hematologic parameters and cytogenetic abnormalities. Somatic gene mutations are not yet used in the risk stratification of patients with MDS. METHODS: To develop a clinical-molecular prognostic model (IPSS-Molecular [IPSS-M]), pretreatment diagnostic or peridiagnostic samples from 2957 patients with MDS were profiled for mutations in 152 genes. Clinical and molecular variables were evaluated for associations with leukemia-free survival, leukemic transformation, and overall survival. Feature selection was applied to determine the set of independent IPSS-M prognostic variables. The relative weights of the selected variables were estimated using a robust Cox multivariable model adjusted for confounders. The IPSS-M was validated in an external cohort of 754 Japanese patients with MDS. RESULTS: We mapped at least one oncogenic genomic alteration in 94% of patients with MDS. Multivariable analysis identified TP53multihit, FLT3 mutations, and MLLPTD as top genetic predictors of adverse outcomes. Conversely, SF3B1 mutations were associated with favorable outcomes, but this was modulated by patterns of comutation. Using hematologic parameters, cytogenetic abnormalities, and somatic mutations of 31 genes, the IPSS-M resulted in a unique risk score for individual patients. We further derived six IPSS-M risk categories with prognostic differences. Compared with the IPSS-R, the IPSS-M improved prognostic discrimination across all clinical end points and restratified 46% of patients. The IPSS-M was applicable in primary and secondary/therapy-related MDS. To simplify clinical use of the IPSS-M, we developed an open-access Web calculator that accounts for missing values. CONCLUSIONS: Combining genomic profiling with hematologic and cytogenetic parameters, the IPSS-M improves the risk stratification of patients with MDS and represents a valuable tool for clinical decision-making. (Funded by Celgene Corporation through the MDS Foundation, the Josie Robertson Investigators Program, the Edward P. Evans Foundation, the Projects of National Relevance of the Italian Ministry of University and Research, Associazione Italiana per la Ricerca sul Cancro, the Japan Agency for Medical Research and Development, Cancer Research UK, the Austrian Science Fund, the MEXT [Japanese Ministry of Education, Culture, Sports, Science and Technology] Program for Promoting Research on the Supercomputer Fugaku, the Japan Society for the Promotion of Science, the Taiwan Department of Health, and Celgene Corporation through the MDS Foundation.)

11.
Cancers (Basel) ; 13(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946220

ABSTRACT

To better understand the molecular basis of resistance to azacitidine (AZA) therapy in myelodysplastic syndromes (MDS) and acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), we performed RNA sequencing on pre-treatment CD34+ hematopoietic stem/progenitor cells (HSPCs) isolated from 25 MDS/AML-MRC patients of the discovery cohort (10 AZA responders (RD), six stable disease, nine progressive disease (PD) during AZA therapy) and from eight controls. Eleven MDS/AML-MRC samples were also available for analysis of selected metabolites, along with 17 additional samples from an independent validation cohort. Except for two patients, the others did not carry isocitrate dehydrogenase (IDH)1/2 mutations. Transcriptional landscapes of the patients' HSPCs were comparable to those published previously, including decreased signatures of active cell cycling and DNA damage response in PD compared to RD and controls. In addition, PD-derived HSPCs revealed repressed markers of the tricarboxylic acid cycle, with IDH2 among the top 50 downregulated genes in PD compared to RD. Decreased citrate plasma levels, downregulated expression of the (ATP)-citrate lyase and other transcriptional/metabolic networks indicate metabolism-driven histone modifications in PD HSPCs. Observed histone deacetylation is consistent with transcription-nonpermissive chromatin configuration and quiescence of PD HSPCs. This study highlights the complexity of the molecular network underlying response/resistance to hypomethylating agents.

13.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430232

ABSTRACT

Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.

14.
Cancers (Basel) ; 12(10)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977510

ABSTRACT

BACKGROUND: myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder with an incompletely known pathogenesis. Long noncoding RNAs (lncRNAs) play multiple roles in hematopoiesis and represent a new class of biomarkers and therapeutic targets, but information on their roles in MDS is limited. AIMS: here, we aimed to characterize lncRNAs deregulated in MDS that may function in disease pathogenesis. In particular, we focused on the identification of lncRNAs that could serve as novel potential biomarkers of adverse outcomes in MDS. METHODS: we performed microarray expression profiling of lncRNAs and protein-coding genes (PCGs) in the CD34+ bone marrow cells of MDS patients. Expression profiles were analyzed in relation to different aspects of the disease (i.e., diagnosis, disease subtypes, cytogenetic and mutational aberrations, and risk of progression). LncRNA-PCG networks were constructed to link deregulated lncRNAs with regulatory mechanisms associated with MDS. RESULTS: we found several lncRNAs strongly associated with disease pathogenesis (e.g., H19, WT1-AS, TCL6, LEF1-AS1, EPB41L4A-AS1, PVT1, GAS5, and ZFAS1). Of these, downregulation of LEF1-AS1 and TCL6 and upregulation of H19 and WT1-AS were associated with adverse outcomes in MDS patients. Multivariate analysis revealed that the predominant variables predictive of survival are blast count, H19 level, and TP53 mutation. Coexpression network data suggested that prognosis-related lncRNAs are predominantly related to cell adhesion and differentiation processes (H19 and WT1-AS) and mechanisms such as chromatin modification, cytokine response, and cell proliferation and death (LEF1-AS1 and TCL6). In addition, we observed that transcriptional regulation in the H19/IGF2 region is disrupted in higher-risk MDS, and discordant expression in this locus is associated with worse outcomes. CONCLUSIONS: we identified specific lncRNAs contributing to MDS pathogenesis and proposed cellular processes associated with these transcripts. Of the lncRNAs associated with patient prognosis, the level of H19 transcript might serve as a robust marker comparable to the clinical variables currently used for patient stratification.

15.
Nat Med ; 26(10): 1549-1556, 2020 10.
Article in English | MEDLINE | ID: mdl-32747829

ABSTRACT

Tumor protein p53 (TP53) is the most frequently mutated gene in cancer1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease3,4, rapid transformation to acute myeloid leukemia (AML)5, resistance to conventional therapies6-8 and dismal outcomes9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R)11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response.


Subject(s)
Genomic Instability/genetics , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Tumor Suppressor Protein p53/genetics , Alleles , Cohort Studies , DNA Copy Number Variations/genetics , DNA Mutational Analysis , Female , Gene Frequency , Humans , Loss of Heterozygosity/genetics , Male , Mutation , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/therapy , Phenotype , Prognosis , Survival Analysis , Treatment Outcome
16.
Cells ; 9(4)2020 03 26.
Article in English | MEDLINE | ID: mdl-32224889

ABSTRACT

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders with large heterogeneity at the clinical and molecular levels. As diagnostic procedures shift from bone marrow biopsies towards less invasive techniques, circulating small noncoding RNAs (sncRNAs) have become of particular interest as potential novel noninvasive biomarkers of the disease. We aimed to characterize the expression profiles of circulating sncRNAs of MDS patients and to search for specific RNAs applicable as potential biomarkers. We performed small RNA-seq in paired samples of total plasma and plasma-derived extracellular vesicles (EVs) obtained from 42 patients and 17 healthy controls and analyzed the data with respect to the stage of the disease, patient survival, response to azacitidine, mutational status, and RNA editing. Significantly higher amounts of RNA material and a striking imbalance in RNA content between plasma and EVs (more than 400 significantly deregulated sncRNAs) were found in MDS patients compared to healthy controls. Moreover, the RNA content of EV cargo was more homogeneous than that of total plasma, and different RNAs were deregulated in these two types of material. Differential expression analyses identified that many hematopoiesis-related miRNAs (e.g., miR-34a, miR-125a, and miR-150) were significantly increased in MDS and that miRNAs clustered on 14q32 were specifically increased in early MDS. Only low numbers of circulating sncRNAs were significantly associated with somatic mutations in the SF3B1 or DNMT3A genes. Survival analysis defined a signature of four sncRNAs (miR-1237-3p, U33, hsa_piR_019420, and miR-548av-5p measured in EVs) as the most significantly associated with overall survival (HR = 5.866, p < 0.001). In total plasma, we identified five circulating miRNAs (miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-5p, and miR-199a-3p) whose combined expression levels could predict the response to azacitidine treatment. In conclusion, our data demonstrate that circulating sncRNAs show specific patterns in MDS and that their expression changes during disease progression, providing a rationale for the potential clinical usefulness of circulating sncRNAs in MDS prognosis. However, monitoring sncRNA levels in total plasma or in the EV fraction does not reflect one another, instead, they seem to represent distinctive snapshots of the disease and the data should be interpreted circumspectly with respect to the type of material analyzed.


Subject(s)
Extracellular Vesicles/metabolism , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/genetics , RNA, Small Untranslated/blood , Azacitidine/pharmacology , Biomarkers/blood , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Kaplan-Meier Estimate , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , Multivariate Analysis , Mutation/genetics , Myelodysplastic Syndromes/pathology , Prognosis , Proportional Hazards Models , RNA Editing/genetics , RNA, Small Untranslated/genetics , Reproducibility of Results , Signal Transduction/genetics , Treatment Outcome
17.
Genes Chromosomes Cancer ; 59(7): 396-405, 2020 07.
Article in English | MEDLINE | ID: mdl-32170980

ABSTRACT

The karyotype of bone-marrow cells at the time of diagnosis is one of the most important prognostic factors in patients with myelodysplastic syndromes (MDS). In some cases, the acquisition of additional genetic aberrations (clonal evolution [CE]) associated with clinical progression may occur during the disease. We analyzed a cohort of 469 MDS patients using a combination of molecular cytogenomic methods to identify cryptic aberrations and to assess their potential role in CE. We confirmed CE in 36 (8%) patients. The analysis of bone-marrow samples with a combination of cytogenomic methods at diagnosis and after CE identified 214 chromosomal aberrations. The early genetic changes in the diagnostic samples were frequently MDS specific (17 MDS-specific/57 early changes). Most progression-related aberrations identified after CE were not MDS specific (131 non-MDS-specific/155 progression-related changes). Copy number neutral loss of heterozygosity (CN-LOH) was detected in 19% of patients. MDS-specific CN-LOH (4q, 17p) was identified in three patients, and probably pathogenic homozygous mutations were found in TET2 (4q24) and TP53 (17p13.1) genes. We observed a statistically significant difference in overall survival (OS) between the groups of patients divided according to their diagnostic cytogenomic findings, with worse OS in the group with complex karyotypes (P = .021). A combination of cytogenomic methods allowed us to detect many cryptic genomic changes and identify genes and genomic regions that may represent therapeutic targets in patients with progressive MDS.


Subject(s)
Clonal Evolution , Myelodysplastic Syndromes/genetics , Adult , Aged , Aged, 80 and over , Chromosome Aberrations , DNA-Binding Proteins/genetics , Dioxygenases , Female , Humans , Loss of Heterozygosity , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/classification , Myelodysplastic Syndromes/pathology , Prognosis , Proto-Oncogene Proteins/genetics , Survival Analysis , Tumor Suppressor Protein p53/genetics
18.
Oncol Res Treat ; 42(5): 263-268, 2019.
Article in English | MEDLINE | ID: mdl-30861523

ABSTRACT

BACKGROUND: We aimed to detect single nucleotide polymorphisms (SNPs) and mutations in DNA repair genes and their possible association with myelodysplastic syndrome (MDS). METHODS: Targeted enrichment resequencing of 84 DNA repair genes was initially performed on a screening cohort of MDS patients. Real-time polymerase chain reaction was used for genotyping selected SNPs in the validation cohort of patients. RESULTS: A heterozygous frameshift mutation in the XRCC2 gene was identified. It leads to the formation of a truncated non-functional protein and decreased XRCC2 expression level. Decreased expression levels of all DNA repair genes functionally connected with mutated XRCC2 were also present. Moreover, a synonymous substitution in the PRKDC gene and 2 missense mutations in the SMUG1 and XRCC1 genes were also found. In the screening cohort, 6 candidate SNPs were associated with the tendency to develop MDS: rs4135113 (TDG, p = 0.03), rs12917 (MGMT, p = 0.003), rs2230641 (CCNH, p = 0.01), rs2228529 and rs2228526 (ERCC6, p = 0.04 and p = 0.03), and rs1799977 (MLH1, p = 0.04). In the validation cohort, only a polymorphism in MLH1 was significantly associated with development of MDS in patients with poor cytogenetics (p = 0.0004). CONCLUSION: Our study demonstrates that genetic variants are present in DNA repair genes of MDS patients and may be associated with susceptibility to MDS.


Subject(s)
DNA Repair , DNA-Binding Proteins/genetics , Mutation , Myelodysplastic Syndromes/genetics , DNA Mutational Analysis , DNA-Activated Protein Kinase/genetics , Female , Genetic Predisposition to Disease , Humans , Middle Aged , MutL Protein Homolog 1/genetics , Myelodysplastic Syndromes/enzymology , Myelodysplastic Syndromes/metabolism , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Uracil-DNA Glycosidase/genetics , X-ray Repair Cross Complementing Protein 1/genetics
20.
Cells ; 7(9)2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30223454

ABSTRACT

The DLK1⁻DIO3 region contains a large miRNA cluster, the overexpression of which has previously been associated with myelodysplastic syndromes (MDS). To reveal whether this overexpression is epigenetically regulated, we performed an integrative analysis of miRNA/mRNA expression and DNA methylation of the regulatory sequences in the region (promoter of the MEG3 gene) in CD34+ bone marrow cells from the patients with higher-risk MDS and acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), before and during hypomethylating therapy with azacytidine (AZA). Before treatment, 50% of patients showed significant miRNA/mRNA overexpression in conjunction with a diagnosis of AML-MRC. Importantly, increased level of MEG3 was associated with poor outcome. After AZA treatment, the expression levels were reduced and were closer to those seen in the healthy controls. In half of the patients, we observed significant hypermethylation in a region preceding the MEG3 gene that negatively correlated with expression. Interestingly, this hypermethylation (when found before treatment) was associated with longer progression-free survival after therapy initiation. However, neither expression nor methylation status were associated with future responsiveness to AZA treatment. In conclusion, we correlated expression and methylation changes in the DLK1⁻DIO3 region, and we propose a complex model for regulation of this region in myelodysplasia.

SELECTION OF CITATIONS
SEARCH DETAIL
...