Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-480166

ABSTRACT

Monoclonal antibody therapy for the treatment of SARS-CoV-2 infection has been highly successful in decreasing disease severity; however, the recent emergence of the heavily mutated Omicron variant has posed a challenge to this treatment strategy. The Omicron variant BA.1 has been found to evade neutralization by several of the therapeutic monoclonal antibodies authorized for emergency use, while Vir-7831 and a cocktail consisting of monoclonal antibodies AZD8895+AZD1061 retain significant neutralizing activity. A newly emerged variant, Omicron BA.2, containing some of the BA.1 mutations plus an additional 6 mutations and 3 deletions, 3 of which lie in the receptor binding domain, has been found to be spreading with increased transmissibility. We report here, using spike protein-pseudotyped lentiviruses, decreased neutralization of BA.2 by several therapeutic monoclonal antibodies but that the mixture of AZD8895+AZD1061 retained substantial neutralizing activity against BA.2.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-474369

ABSTRACT

Currently authorized vaccines for SARS-CoV-2 have been highly successful in preventing infection and lessening disease severity. The vaccines maintain effectiveness against SARS-CoV-2 Variants of Concern but the heavily mutated, highly transmissible Omicron variant poses an obstacle both to vaccine protection and monoclonal antibody therapies. Analysis of the neutralization of Omicron spike protein-pseudotyped lentiviruses showed a 26-fold relative resistance (compared to D614G) to neutralization by convalescent sera and 26-34-fold resistance to Pfizer BNT162b2 and Moderna vaccine-elicited antibodies following two immunizations. A booster immunization increased neutralizing titers against Omicron by 6-8-fold. Previous SARS-CoV-2 infection followed by vaccination resulted in the highest neutralizing titers against Omicron. Regeneron REGN10933 and REGN10987, and Lilly LY-CoV555 and LY-CoV016 monoclonal antibodies were ineffective against Omicron, while Sotrovimab was partially effective. The results highlight the benefit of a booster immunization in providing protection against Omicron but demonstrate the challenge to monoclonal antibody therapies.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-463727

ABSTRACT

Recently identified SARS-CoV-2 variants Mu and C.1.2 have mutations in the receptor binding domain and N- and C-terminal domains that might confer resistance to natural and vaccine-elicited antibody. Analysis with pseudotyped lentiviruses showed that viruses with the Mu and C.1.2 spike proteins were partially resistant to neutralization by antibodies in convalescent sera and those elicited by mRNA and adenoviral vector-based vaccine-elicited antibodies. Virus with the C.1.2 variant spike, which is heavily mutated, was more neutralization-resistant than that of any of variants of concern. The resistance of the C.1.2 spike was caused by a combination of the RBD mutations N501Y, Y449H and E484K and the NTD mutations. Although Mu and C.1.2 were partially resistant to neutralizing antibody, neutralizing titers elicited by mRNA vaccination remained above what is found in convalescent sera and thus are likely to remain protective against severe disease. The neutralizing titers of sera from infection-experienced BNT162b2-vaccinated individuals, those with a history of previous SARS-CoV-2 infection, were as much as 15-fold higher than those of vaccinated individuals without previous infection and effectively neutralized all of the variants. The findings demonstrate that individuals can raise a broadly neutralizing humoral response by generating a polyclonal response to multiple spike protein epitopes that should protect against current and future variants.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-452771

ABSTRACT

The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine efficacy. Here, neutralizing antibody titers elicited by mRNA-based and an adenoviral vector-based vaccine against variant pseudotyped viruses were compared. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals were of low neutralizing titer (IC50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest the benefit of a second immunization following Ad26.COV2.S to increase protection against the variants.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-450959

ABSTRACT

The SARS-CoV-2 lambda variant (lineage C.37) was designated by the World Health Organization as a variant of interest and is currently increasing in prevalence in South American and other countries. The lambda spike protein contains novel mutations within the receptor binding domain (L452Q and F490S) that may contribute to its increased transmissibility and could result in susceptibility to re-infection or a reduction in protection provided by current vaccines. In this study, the infectivity and susceptibility of viruses with the lambda variant spike protein to neutralization by convalescent sera and vaccine-elicited antibodies was tested. Virus with the lambda spike had higher infectivity and was neutralized by convalescent sera and vaccine-elicited antibodies with a relatively minor 2.3-3.3-fold decrease in titer on average. The virus was neutralized by the Regeneron therapeutic monoclonal antibody cocktail with no loss of titer. The results suggest that vaccines in current use will remain protective against the lambda variant and that monoclonal antibody therapy will remain effective.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-444076

ABSTRACT

Highly transmissible SARS-CoV-2 variants recently identified in India designated B.1.617 and B.1.618 have mutations within the spike protein that may contribute to their increased transmissibility and that could potentially result in re-infection or resistance to vaccine-elicited antibody. B.1.617 encodes a spike protein with mutations L452R, E484Q, D614G and P681R while the B.1.618 spike has mutations {Delta}145-146, E484K and D614G. We generated lentiviruses pseudotyped by the variant proteins and determined their resistance to neutralization by convalescent sera, vaccine-elicited antibodies and therapeutic monoclonal antibodies. Viruses with B.1.617 and B.1.618 spike were neutralized with a 2-5-fold decrease in titer by convalescent sera and vaccine-elicited antibodies. The E484Q and E484K versions were neutralized with a 2-4-fold decrease in titer. Virus with the B.1.617 spike protein was neutralized with a 4.7-fold decrease in titer by the Regeneron monoclonal antibody cocktail as a result of the L452R mutation. The modest neutralization resistance of the variant spike proteins to vaccine elicited antibody suggests that current vaccines will remain protective against the B.1.617 and B.1.618 variants.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-436620

ABSTRACT

DNA sequence analysis recently identified the novel SARS-CoV-2 variant B.1.526 that is spreading at an alarming rate in the New York City area. Two versions of the variant were identified, both with the prevalent D614G mutation in the spike protein together with four novel point mutations and with an E484K or S477N mutation in the receptor binding domain, raising concerns of possible resistance to vaccine-elicited and therapeutic antibodies. We report that convalescent sera and vaccine-elicited antibodies retain full neutralizing titer against the S477N B.1.526 variant and neutralize the E484K version with a modest 3.5-fold decrease in titer as compared to D614G. The E484K version was neutralized with a 12-fold decrease in titer by the REGN10933 monoclonal antibody but the combination cocktail with REGN10987 was fully active. The findings suggest that current vaccines and therapeutic monoclonal antibodies will remain protective against the B.1.526 variants. The findings further support the value of wide-spread vaccination.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-431897

ABSTRACT

Monoclonal antibodies against the SARS-CoV-2 spike protein, notably, those developed by Regeneron Pharmaceuticals and Eli Lilly and Company have proven to provide protection against severe COVID-19. The emergence of SARS-CoV-2 variants with heavily mutated spike proteins raises the concern that the therapy could become less effective if any of the mutations disrupt epitopes engaged by the antibodies. In this study, we tested monoclonal antibodies REGN10933 and REGN10987 that are used in combination, for their ability to neutralize SARS-CoV-2 variants B.1.1.7, B.1.351, mink cluster 5 and COH.20G/677H. We report that REGN10987 maintains most of its neutralization activity against viruses with B.1.1.7, B.1.351 and mink cluster 5 spike proteins but that REGN10933 has lost activity against B.1.351 and mink cluster 5. The failure of REGN10933 to neutralize B.1.351 is caused by the K417N and E484K mutations in the receptor binding domain; the failure to neutralize the mink cluster 5 spike protein is caused by the Y453F mutation. The REGN10933 and REGN10987 combination was 9.1-fold less potent on B.1.351 and 16.2-fold less potent on mink cluster 5, raising concerns of reduced efficacy in the treatment of patients infected with variant viruses. The results suggest that there is a need to develop additional monoclonal antibodies that are not affected by the current spike protein mutations.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-430003

ABSTRACT

The increasing prevalence of SARS-CoV-2 variants with mutations in the spike protein has raised concerns that recovered individuals may not be protected from reinfection and that current vaccines will become less effective. The B.1.1.7 isolate identified in the United Kingdom and B.1.351 isolate identified in the Republic of South Africa encode spike proteins with multiple mutations in the S1 and S2 subunits. In addition, variants have been identified in Columbus, Ohio (COH.20G/677H), Europe (20A.EU2) and in domesticated minks. Analysis by antibody neutralization of pseudotyped viruses showed that convalescent sera from patients infected prior to the emergence of the variant viruses neutralized viruses with the B.1.1.7, B.1.351, COH.20G/677H Columbus Ohio, 20A.EU2 Europe and mink cluster 5 spike proteins with only a minor decrease in titer compared to that of the earlier D614G spike protein. Serum specimens from individuals vaccinated with the BNT162b2 mRNA vaccine neutralized D614G virus with titers that were on average 7-fold greater than convalescent sera. Vaccine elicited antibodies neutralized virus with the B.1.1.7 spike protein with titers similar to D614G virus and neutralized virus with the B.1.351 spike with, on average, a 3-fold reduction in titer (1:500), a titer that was still higher than the average titer with which convalescent sera neutralized D614G (1:139). The reduction in titer was attributable to the E484K mutation in the RBD. The B.1.1.7 and B.1.351 viruses were not more infectious than D614G on ACE2.293T cells in vitro but N501Y, an ACE2 contacting residue present in the B.1.1.7, B.1.351 and COH.20G/677H spike proteins caused higher affinity binding to ACE2, likely contributing to their increased transmissibility. These findings suggest that antibodies elicited by primary infection and by the BNT162b2 mRNA vaccine are likely to maintain protective efficacy against B.1.1.7 and most other variants but that the partial resistance of virus with the B.1.351 spike protein could render some individuals less well protected, supporting a rationale for the development of modified vaccines containing E484K.

SELECTION OF CITATIONS
SEARCH DETAIL
...