Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 19(5): 473-488, 2021 09.
Article in English | MEDLINE | ID: mdl-33951268

ABSTRACT

The search for a fossil record of Earth's deep biosphere, partly motivated by potential analogies with subsurface habitats on Mars, has uncovered numerous assemblages of inorganic microfilaments and tubules inside ancient pores and fractures. Although these enigmatic objects are morphologically similar to mineralized microorganisms (and some contain organic carbon), they also resemble some abiotic structures. Palaeobiologists have responded to this ambiguity by evaluating problematic filaments against checklists of "biogenicity criteria". Here, we describe material that tests the limits of this approach. We sampled Jurassic calcite veins formed through subseafloor serpentinization, a water-rock reaction that can fuel the deep biosphere and is known to have occurred widely on Mars. At two localities ~4 km apart, veins contained curving, branched microfilaments composed of Mg-silicate and Fe-oxide minerals. Using a wide range of analytical techniques including synchrotron X-ray microtomography and scanning transmission electron microscopy, we show that these features meet many published criteria for biogenicity and are comparable to fossilized cryptoendolithic fungi or bacteria. However, we argue that abiotic processes driven by serpentinization could account for the same set of lifelike features, and report a chemical garden experiment that supports this view. These filaments are, therefore, most objectively described as dubiofossils, a designation we here defend from criticism and recommend over alternative approaches, but which nevertheless signifies an impasse. Similar impasses can be anticipated in the future exploration of subsurface palaeo-habitats on Earth and Mars. To avoid them, further studies are required in biomimetic geochemical self-organization, microbial taphonomy and micro-analytical techniques, with a focus on subsurface habitats.


Subject(s)
Exobiology , Mars , Earth, Planet , Extraterrestrial Environment , Fossils
2.
PLoS One ; 13(8): e0200351, 2018.
Article in English | MEDLINE | ID: mdl-30089115

ABSTRACT

Garnets from disparate geographical environments and origins such as oxidized soils and river sediments in Thailand host intricate systems of microsized tunnels that significantly decrease the quality and value of the garnets as gems. The origin of such tunneling has previously been attributed to abiotic processes. Here we present physical and chemical remains of endolithic microorganisms within the tunnels and discuss a probable biological origin of the tunnels. Extensive investigations with synchrotron-radiation X-ray tomographic microscopy (SRXTM) reveal morphological indications of biogenicity that further support a euendolithic interpretation. We suggest that the production of the tunnels was initiated by a combination of abiotic and biological processes, and that at later stages biological processes came to dominate. In environments such as river sediments and oxidized soils garnets are among the few remaining sources of bio-available Fe2+, thus it is likely that microbially mediated boring of the garnets has trophic reasons. Whatever the reason for garnet boring, the tunnel system represents a new endolithic habitat in a hard silicate mineral otherwise known to be resistant to abrasion and chemical attack.


Subject(s)
Geologic Sediments/chemistry , Minerals/chemistry , Rivers/chemistry , Silicates/chemistry , Soil/chemistry , Ferrous Compounds/chemistry , Fossils , Geologic Sediments/microbiology , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Thailand
3.
Nat Commun ; 8(1): 55, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676652

ABSTRACT

The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.


Subject(s)
Bacteria, Anaerobic/isolation & purification , Fossils/microbiology , Fungi/isolation & purification , Geologic Sediments/microbiology , Silicon Dioxide , Bacteria, Anaerobic/ultrastructure , Fossils/ultrastructure , Fungi/ultrastructure , Microscopy, Electron, Scanning , Sweden
4.
PLoS Biol ; 15(3): e2000735, 2017 03.
Article in English | MEDLINE | ID: mdl-28291791

ABSTRACT

The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, "cell fountains," and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years.


Subject(s)
Fossils , Geological Phenomena , Rhodophyta/cytology , Geologic Sediments , India , Phylogeny , Radiometry , Rhodophyta/ultrastructure , Subcellular Fractions/metabolism , Time Factors
5.
PLoS One ; 10(10): e0140106, 2015.
Article in English | MEDLINE | ID: mdl-26488482

ABSTRACT

We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites-remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Microbial Consortia , Silicates/analysis , Zeolites/analysis , Fossils , Fungi/ultrastructure , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Hyphae/metabolism , Hyphae/ultrastructure , Metals/metabolism , Microscopy/methods , Microscopy, Electron, Scanning , Minerals/metabolism , Seawater/chemistry , Seawater/microbiology , Spectrum Analysis, Raman , Synchrotrons , Tomography, X-Ray/methods
6.
Proc Biol Sci ; 282(1812): 20151169, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26180072

ABSTRACT

Molecular clock analyses estimate that crown-group animals began diversifying hundreds of millions of years before the start of the Cambrian period. However, the fossil record has not yielded unequivocal evidence for animals during this interval. Some of the most promising candidates for Precambrian animals occur in the Weng'an biota of South China, including a suite of tubular fossils assigned to Sinocyclocyclicus, Ramitubus, Crassitubus and Quadratitubus, that have been interpreted as soft-bodied eumetazoans comparable to tabulate corals. Here, we present new insights into the anatomy, original composition and phylogenetic affinities of these taxa based on data from synchrotron radiation X-ray tomographic microscopy, ptychographic nanotomography, scanning electron microscopy and electron probe microanalysis. The patterns of deformation observed suggest that the cross walls of Sinocyclocyclicus and Quadratitubus were more rigid than those of Ramitubus and Crassitubus. Ramitubus and Crassitubus specimens preserve enigmatic cellular clusters at terminal positions in the tubes. Specimens of Sinocyclocyclicus and Ramitubus have biological features that might be cellular tissue or subcellular structures filling the spaces between the cross walls. These observations are incompatible with a cnidarian interpretation, in which the spaces between cross walls are abandoned parts of the former living positions of the polyp. The affinity of the Weng'an tubular fossils may lie within the algae.


Subject(s)
Fossils/anatomy & histology , Invertebrates/anatomy & histology , Animals , Body Patterning , China , Cyanobacteria/classification , Cyanobacteria/cytology , Cyanobacteria/growth & development , Cyanobacteria/ultrastructure , Eukaryota/classification , Eukaryota/cytology , Eukaryota/growth & development , Eukaryota/ultrastructure , Fossils/ultrastructure , Invertebrates/classification , Invertebrates/growth & development , Invertebrates/ultrastructure
7.
Nat Commun ; 4: 2050, 2013.
Article in English | MEDLINE | ID: mdl-23784372

ABSTRACT

Debates on the formation of banded iron formations in ancient ferruginous oceans are dominated by a dichotomy between abiotic and biotic iron cycling. This is fuelled by difficulties in unravelling the exact processes involved in their formation. Here we provide fossil environmental evidence for anoxygenic photoferrotrophic deposition of analogue banded iron rocks in shallow marine waters associated with an Early Quaternary hydrothermal vent field on Milos Island, Greece. Trace metal, major and rare earth elemental compositions suggest that the deposited rocks closely resemble banded iron formations of Precambrian origin. Well-preserved microbial fossils in combination with chemical data imply that band formation was linked to periodic massive encrustation of anoxygenic phototrophic biofilms by iron oxyhydroxide alternating with abiotic silica precipitation. The data implicate cyclic anoxygenic photoferrotrophy and their fossilization mechanisms in the construction of microskeletal fabrics that result in the formation of characteristic banded iron formation bands of varying silica and iron oxide ratios.


Subject(s)
Bacteria/metabolism , Fossils , Geological Phenomena , Iron/metabolism , Geography , Greece , Models, Biological , Oxidation-Reduction , Phototrophic Processes , Silicon Dioxide/metabolism
8.
Proc Natl Acad Sci U S A ; 106(19): 7729-34, 2009 May 12.
Article in English | MEDLINE | ID: mdl-19416859

ABSTRACT

The age of the Vindhyan sedimentary basin in central India is controversial, because geochronology indicating early Proterozoic ages clashes with reports of Cambrian fossils. We present here an integrated paleontologic-geochronologic investigation to resolve this conundrum. New sampling of Lower Vindhyan phosphoritic stromatolitic dolomites from the northern flank of the Vindhyans confirms the presence of fossils most closely resembling those found elsewhere in Cambrian deposits: annulated tubes, embryo-like globules with polygonal surface pattern, and filamentous and coccoidal microbial fabrics similar to Girvanella and Renalcis. None of the fossils, however, can be ascribed to uniquely Cambrian or Ediacaran taxa. Indeed, the embryo-like globules are not interpreted as fossils at all but as former gas bubbles trapped in mucus-rich cyanobacterial mats. Direct dating of the same fossiliferous phosphorite yielded a Pb-Pb isochron of 1,650 +/- 89 (2sigma) million years ago, confirming the Paleoproterozoic age of the fossils. New U-Pb geochronology of zircons from tuffaceous mudrocks in the Lower Vindhyan Porcellanite Formation on the southern flank of the Vindhyans give comparable ages. The Vindhyan phosphorites provide a window of 3-dimensionally preserved Paleoproterozoic fossils resembling filamentous and coccoidal cyanobacteria and filamentous eukaryotic algae, as well as problematic forms. Like Neoproterozoic phosphorites a billion years later, the Vindhyan deposits offer important new insights into the nature and diversity of life, and in particular, the early evolution of multicellular eukaryotes.


Subject(s)
Fossils , Archaeology/methods , Biological Evolution , Cyanobacteria/metabolism , Gases , Geologic Sediments/microbiology , Paleontology/methods , Phylogeny , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...