Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Clin Breast Cancer ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38997857

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood. METHODS: We analyzed FAM3B expression data from breast cancer patients available at TCGA database and overall survival was analyzed by using the Kaplan-Meier plotter. MDA-MB-231 TNBC tumor cell line and hormone-responsive MCF-7 cell lines were transfected to overexpress FAM3B. We assessed cell death, tumorigenicity, and invasiveness in vitro through MTT analysis, flow cytometry assays, anchorage-independent tumor growth, and wound healing assays, respectively. We performed in vivo evaluation by tumor xenograft in nude mice. RESULTS: In silico analysis revealed that FAM3B expression was lower in all breast tumors. However, TNBC patients with high FAM3B expression had a poor prognosis. FAM3B overexpression protected MDA-MB-231 cells from cell death, with increased expression of Bcl-2 and Bcl-xL, and reduced caspase-3 activity. MDA-MB-231 cells overexpressing FAM3B also exhibited increased tumorigenicity and migration rates in vitro, displaying increased tumor growth and reduced survival rates in xenotransplanted nude mice. This phenotype is accompanied by the upregulation of EMT-related genes Slug, Snail, TGFBR2, vimentin, N-cadherin, MMP-2, MMP-9, and MMP-14. However, these effects were not observed in the MCF-7 cells overexpressing FAM3B. CONCLUSION: FAM3B overexpression contributes to tumor growth, promotion of metastasis, and, consequently, leads to a poor prognosis in the most aggressive forms of breast cancer. Future clinical research is necessary to validate FAM3B as both a diagnostic and a therapeutic strategy for TNBC.

2.
Curr Res Immunol ; 4: 100065, 2023.
Article in English | MEDLINE | ID: mdl-37456520

ABSTRACT

The studies on the composition of the human microbiomes in healthy individuals, its variability in the course of inflammation, infection, antibiotic therapy, diets and different pathological conditions have revealed their intra and inter-kingdom relationships. The lung microbiome comprises of major species members of the phylum Bacteroidetes, Firmicutes, Actinobacteria, Fusobacteria and Proteobacteria, which are distributed in ecological niches along nasal cavity, nasopharynx, oropharynx, trachea and in the lungs. Commensal and pathogenic species are maintained in equilibrium as they have strong relationships. Bacterial overgrowth after dysbiosis and/or imbalanced of CD4+ helper T cells, CD8+ cytotoxic T cells and regulatory T cells (Treg) populations can promote lung inflammatory reactions and distress, and consequently acute and chronic respiratory diseases. This review is aimed to summarize the latest advances in resident lung microbiome and its participation in most common pulmonary infections and pneumonia, community-acquired pneumonia (CAP), ventilator-associated pneumonia (VAP), immunodeficiency associated pneumonia, SARS-CoV-2-associated pneumonia, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). We briefly describe physiological and immunological mechanisms that selectively create advantages or disadvantages for relative growth of pathogenic bacterial species in the respiratory tract. At the end, we propose some directions and analytical methods that may facilitate the identification of key genera and species of resident and transient microbes involved in the respiratory diseases' initiation and progression.

3.
BMC Vet Res ; 16(1): 420, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33138825

ABSTRACT

The application of next-generation molecular, biochemical and immunological methods for developing new vaccines, antimicrobial compounds, probiotics and prebiotics for zoonotic infection control has been fundamental to the understanding and preservation of the symbiotic relationship between animals and humans. With increasing rates of antibiotic use, resistant bacterial infections have become more difficult to diagnose, treat, and eradicate, thereby elevating the importance of surveillance and prevention programs. Effective surveillance relies on the availability of rapid, cost-effective methods to monitor pathogenic bacterial isolates. In this opinion article, we summarize the results of some research program initiatives for the improvement of live vaccines against avian enterotoxigenic Escherichia coli using virulence factor gene deletion and engineered vaccine vectors based on probiotics. We also describe methods for the detection of pathogenic bacterial strains in eco-environmental headspace and aerosols, as well as samples of animal and human breath, based on the composition of volatile organic compounds and fatty acid methyl esters. We explain how the introduction of these low-cost biotechnologies and protocols will provide the opportunity to enhance co-operation between networks of resistance surveillance programs and integrated routine workflows of veterinary and clinical public health microbiology laboratories.


Subject(s)
Biotechnology , Drug Resistance, Bacterial , Enterotoxigenic Escherichia coli/immunology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/immunology , Bacterial Infections/immunology , Chickens , Enterotoxigenic Escherichia coli/genetics , Escherichia coli Infections/immunology , Escherichia coli Infections/veterinary , Escherichia coli Vaccines/immunology , Humans , Probiotics , Virulence Factors/genetics
5.
PLoS One ; 15(7): e0235856, 2020.
Article in English | MEDLINE | ID: mdl-32649732

ABSTRACT

Gene editing in large animal models for future applications in translational medicine and food production must be deeply investigated for an increase of knowledge. The mitochondrial transcription factor A (TFAM) is a member of the HMGB subfamily that binds to mtDNA promoters. This gene maintains mtDNA, and it is essential for the initiation of mtDNA transcription. Lately, we generated a new cell line through the disruption of the TFAM gene in bovine fibroblast cells by CRISPR/Cas 9 technology. We showed that the CRISPR/Cas9 design was efficient through the generation of heterozygous mutant clones. In this context, once this gene regulates the mtDNA replication specificity, the study aimed to determine if the post-edited cells are capable of in vitro maintenance and assess if they present changes in mtDNA copies and mitochondrial membrane potential after successive passages in culture. The post-edited cells were expanded in culture, and we performed a growth curve, doubling time, cell viability, mitochondrial DNA copy number, and mitochondrial membrane potential assays. The editing process did not make cell culture unfeasible, even though cell growth rate and viability were decreased compared to control since we observed the cells grow well when cultured in a medium supplemented with uridine and pyruvate. They also exhibited a classical fibroblastoid appearance. The RT-qPCR to determine the mtDNA copy number showed a decrease in the edited clones compared to the non-edited ones (control) in different cell passages. Cell staining with Mitotracker Green and red suggests a reduction in red fluorescence in the edited cells compared to the non-edited cells. Thus, through characterization, we demonstrated that the TFAM gene is critical to mitochondrial maintenance due to its interference in the stability of the mitochondrial DNA copy number in different cell passages and membrane potential confirming the decrease in mitochondrial activity in cells edited in heterozygosis.


Subject(s)
CRISPR-Cas Systems , Cattle/genetics , DNA-Binding Proteins/genetics , Gene Editing , Mitochondrial Proteins/genetics , Transcription Factors/genetics , Animals , Cells, Cultured , DNA Replication , DNA, Mitochondrial/genetics , Fibroblasts/metabolism , Gene Dosage , Mitochondria/genetics
6.
Ther Adv Vaccines Immunother ; 8: 2515135520904238, 2020.
Article in English | MEDLINE | ID: mdl-32206744

ABSTRACT

CD8+ T-cell exhaustion is a dysfunctional state that is regulated through the expression of inhibitory checkpoint receptor genes including the cytotoxic T-lymphocyte-associated antigen 4, programmed death 1, and DNA methylation of effector genes interferon-γ, perforin, and granzyme B. Different strategies have been used to reverse T-cell exhaustion, which is an adverse event of checkpoint inhibitor blockade. Here, we present the mechanisms by which DNA methyltransferase inhibitors and Simian virus 40 large T antigen through viral mimicry can promote the reversion of exhausted CD8+ T cells. We examine how these pharmacological strategies can work together to improve the clinical efficacy of immunotherapies.

7.
Front Cell Infect Microbiol ; 10: 564194, 2020.
Article in English | MEDLINE | ID: mdl-33520731

ABSTRACT

Exhaled breath contains thousand metabolites and volatile organic compounds (VOCs) that originated from both respiratory tract and internal organ systems and their microbiomes. Commensal and pathogenic bacteria and virus of microbiomes are capable of producing VOCs of different chemical classes, and some of them may serve as biomarkers for installation and progression of various common human diseases. Here we describe qualitative and quantitative methods for measuring VOC fingerprints generated by cellular and microbial metabolic and pathologic pathways. We describe different chemical classes of VOCs and their role in the host cell-microbial interactions and their impact on infection disease pathology. We also update on recent progress on VOC signatures emitted by isolated bacterial species and microbiomes, and VOCs identified in exhaled breath of patients with respiratory tract and gastrointestinal diseases, and inflammatory syndromes, including the acute respiratory distress syndrome and sepsis. The VOC curated databases and instrumentations have been developed through statistically robust breathomic research in large patient populations. Scientists have now the opportunity to find potential biomarkers for both triage and diagnosis of particular human disease.


Subject(s)
Communicable Diseases , Volatile Organic Compounds , Biomarkers , Biopsy , Breath Tests , Humans , Respiratory System
9.
BMC Vet Res, v. 16, 420, nov. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3300

ABSTRACT

The application of next-generation molecular, biochemical and immunological methods for developing new vaccines, antimicrobial compounds, probiotics and prebiotics for zoonotic infection control has been fundamental to the understanding and preservation of the symbiotic relationship between animals and humans. With increasing rates of antibiotic use, resistant bacterial infections have become more difficult to diagnose, treat, and eradicate, thereby elevating the importance of surveillance and prevention programs. Effective surveillance relies on the availability of rapid, cost-effective methods to monitor pathogenic bacterial isolates. In this opinion article, we summarize the results of some research program initiatives for the improvement of live vaccines against avian enterotoxigenic Escherichia coli using virulence factor gene deletion and engineered vaccine vectors based on probiotics. We also describe methods for the detection of pathogenic bacterial strains in eco-environmental headspace and aerosols, as well as samples of animal and human breath, based on the composition of volatile organic compounds and fatty acid methyl esters. We explain how the introduction of these low-cost biotechnologies and protocols will provide the opportunity to enhance co-operation between networks of resistance surveillance programs and integrated routine workflows of veterinary and clinical public health microbiology laboratories.

10.
Cancer Drug Resist ; 2(3): 527-538, 2019.
Article in English | MEDLINE | ID: mdl-35582587

ABSTRACT

Breast cancer is the most common cancer in the world. Despite advances in early detection and understanding of the molecular bases of breast cancer biology, approximately 30% of all patients with early-stage breast cancer have metastatic disease. Breast cancers are comprised of molecularly distinct subtypes that respond differently to pathway-targeted therapies and neoadjuvant systemic therapy. However, no tumor response is observed in some cases and development of resistance is most commonly seen in patients with heterogeneous breast cancer subtype. To offer better treatment with increased efficacy and low toxicity of selecting therapies, new technologies that incorporate clinical and molecular characteristics of intratumoral heterogeneity have been investigated. This short review provides some examples of integrative omics approaches (genome, epigenome, transcriptome, immune profiling) and mathematical/computational analyses that provide mechanistic and clinically relevant insights into underlying differences in breast cancer subtypes and patients'responses to specific therapies.

11.
Exp Suppl ; 109: 459-476, 2018.
Article in English | MEDLINE | ID: mdl-30535609

ABSTRACT

The gastrointestinal (GI) tract is the residence of trillions of microorganisms that include bacteria, archaea, fungi and viruses. The collective genomes of whole microbial communities (microbiota) integrate the gut microbiome. Up to 100 genera and 1000 distinct bacterial species were identified in digestive tube niches. Gut microbiomes exert permanent pivotal functions by promoting food digestion, xenobiotic metabolism and regulation of innate and adaptive immunological processes. Proteins, peptides and metabolites released locally and at distant sites trigger many cell signalling and pathways. This intense crosstalk maintains the host-microbial homeostasis. Diet, age, diet, stress and diseases cause increases or decreases in relative abundance and diversity bacterial specie of GI and other body sites. Studies in animal models and humans have shown that a persistent imbalance of gut's microbial community, named dysbiosis, relates to inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), diabetes, obesity, cancer, cardiovascular and central nervous system disorders. Notably specific bacterial communities are promising clinical target to treat inflammatory and infectious diseases. In this context, intestinal microbiota transplantation (IMT) is one optional treatment for IBD, in particular to patients with recurrent Clostridium difficile-induced pseudo-membrane colitis. Here we discuss on recent discoveries linking whole gut microbiome dysbiosis to metabolic and inflammatory diseases and potential prophylactic and therapeutic applications of faecal and phage therapy, probiotic and prebiotic diets.


Subject(s)
Dysbiosis/microbiology , Gastrointestinal Microbiome , Animals , Humans , Immune System , Inflammation , Intestines/microbiology
12.
Innate Immun ; 24(8): 452-465, 2018 11.
Article in English | MEDLINE | ID: mdl-30236030

ABSTRACT

NK cells are innate lymphoid cells that exert a key role in immune surveillance through the recognition and elimination of transformed cells and viral, bacterial, and protozoan pathogen-infected cells without prior sensitization. Elucidating when and how NK cell-induced intracellular microbial cell death functions in the resolution of infection and host inflammation has been an important topic of investigation. NK cell activation requires the engagement of specific activating, co-stimulatory, and inhibitory receptors which control positively and negatively their differentiation, memory, and exhaustion. NK cells secrete diverse cytokines, including IFN-γ, TNF-α/ß, CD95/FasL, and TRAIL, as well as cytoplasmic cytotoxic granules containing perforin, granulysin, and granzymes A and B. Paradoxically, NK cells also kill other immune cells like macrophages, dendritic cells, and hyper-activated T cells, thus turning off self-immune reactions. Here we first provide an overview of NK cell biology, and then we describe and discuss the life-death signals that connect the microbial pathogen sensors to the inflammasomes and finally to cell death signaling pathways. We focus on caspase-mediated cell death by apoptosis and pro-inflammatory and non-caspase-mediated cell death by necroptosis, as well as inflammasome- and caspase-mediated pyroptosis.


Subject(s)
Infections/immunology , Inflammasomes/metabolism , Killer Cells, Natural/physiology , Animals , Caspases/metabolism , Cell Death , Host-Pathogen Interactions , Humans , Immunity, Innate , Immunologic Surveillance , Intracellular Space , Receptors, Pattern Recognition/metabolism , Signal Transduction
13.
BMC Cancer ; 18(1): 90, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29357840

ABSTRACT

BACKGROUND: FAM3B/PANDER is a novel cytokine-like protein that induces apoptosis in insulin-secreting beta-cells. Since in silico data revealed that FAM3B can be expressed in prostate tumors, we evaluated the putative role of this cytokine in prostate tumor progression. METHODS: FAM3B expression was analyzed by quantitative PCR in tumor tissue clinical samples and prostate tumor cell lines. Culture growth and viability of DU145 cell line were evaluated after treatment with either exogenous FAM3B protein obtained from conditioned media (CM) of 293 T cells overexpressing FAM3B or a recombinant FAM3B protein produced in a bacterial host. DU145 cells overexpressing FAM3B protein were produced by lentiviral-mediated transduction of full-length FAM3B cDNA. Cell viability and apoptosis were analyzed in DU145/FAM3B cells after treatment with several cell death inducers, such as TNF-alpha, staurosporine, etoposide, camptothecin, and serum starvation conditions. Anchorage-independent growth in soft agarose assay was used to evaluate in vitro tumorigenicity. In vivo tumorigenicity and invasiveness were evaluated by tumor xenograft growth in nude mice. RESULTS: We observed an increase in FAM3B expression in prostate tumor samples when compared to normal tissues. DU145 cell viability and survival increased after exogenous treatment with recombinant FAM3B protein or FAM3B-secreted protein. Overexpression of FAM3B in DU145 cells promoted inhibition of DNA fragmentation and phosphatidylserine externalization in a time and dose-dependent fashion, upon apoptosis triggered by TNF-alpha. These events were accompanied by increased gene expression of anti-apoptotic Bcl-2 and Bcl-XL, decreased expression of pro-apoptotic Bax and diminished caspase-3, -8 and -9 proteolytic activities. Furthermore, inhibition of Bcl-2 anti-apoptotic family proteins with small molecules antagonists decreases protective effects of FAM3B in DU145 cells. When compared to the respective controls, cells overexpressing FAM3B displayed a decreased anchorage- independent growth in vitro and increased tumor growth in xenografted nude mice. The immunohistochemistry analysis of tumor xenografts revealed a similar anti-apoptotic phenotype displayed by FAM3B-overexpressing tumor cells. CONCLUSIONS: Taken together, by activating pro-survival mechanisms FAM3B overexpression contributes to increased resistance to cell death and tumor growth in nude mice, highlighting a putative role for this cytokine in prostate cancer progression.


Subject(s)
Apoptosis/genetics , Biomarkers, Tumor/genetics , Cytokines/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Animals , Apoptosis/drug effects , Camptothecin/administration & dosage , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/genetics , Humans , Male , Mice , Prostate/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Necrosis Factor-alpha/genetics , Xenograft Model Antitumor Assays , bcl-X Protein/genetics
14.
Mediators Inflamm ; 2018: 2037838, 2018.
Article in English | MEDLINE | ID: mdl-30622429

ABSTRACT

Maintenance of healthy human metabolism depends on a symbiotic consortium among bacteria, archaea, viruses, fungi, and host eukaryotic cells throughout the human gastrointestinal tract. Microbial communities provide the enzymatic machinery and the metabolic pathways that contribute to food digestion, xenobiotic metabolism, and production of a variety of bioactive molecules. These include vitamins, amino acids, short-chain fatty acids (SCFAs), and metabolites, which are essential for the interconnected pathways of glycolysis, the tricarboxylic acid/Krebs cycle, oxidative phosphorylation (OXPHOS), and amino acid and fatty acid metabolism. Recent studies have been elucidating how nutrients that fuel the metabolic processes impact on the ways immune cells, in particular, macrophages, respond to different stimuli under physiological and pathological conditions and become activated and acquire a specialized function. The two major inflammatory phenotypes of macrophages are controlled through differential consumption of glucose, glutamine, and oxygen. M1 phenotype is triggered by polarization signal from bacterial lipopolysaccharide (LPS) and Th1 proinflammatory cytokines such as interferon-γ, TNF-α, and IL-1ß, or both, whereas M2 phenotype is triggered by Th2 cytokines such as interleukin-4 and interleukin-13 as well as anti-inflammatory cytokines, IL-10 and TGFß, or glucocorticoids. Glucose utilization and production of chemical mediators including ATP, reactive oxygen species (ROS), nitric oxide (NO), and NADPH support effector activities of M1 macrophages. Dysbiosis is an imbalance of commensal and pathogenic bacteria and the production of microbial antigens and metabolites. It is now known that the gut microbiota-derived products induce low-grade inflammatory activation of tissue-resident macrophages and contribute to metabolic and degenerative diseases, including diabetes, obesity, metabolic syndrome, and cancer. Here, we update the potential interplay of host gut microbiome dysbiosis and metabolic diseases. We also summarize on advances on fecal therapy, probiotics, prebiotics, symbiotics, and nutrients and small molecule inhibitors of metabolic pathway enzymes as prophylactic and therapeutic agents for metabolic diseases.


Subject(s)
Dysbiosis/metabolism , Dysbiosis/microbiology , Metabolic Diseases/metabolism , Animals , Gastrointestinal Microbiome/physiology , Humans , Macrophages/metabolism , Metabolic Diseases/microbiology
15.
Biochem Cell Biol ; 95(6): 634-643, 2017 12.
Article in English | MEDLINE | ID: mdl-28658581

ABSTRACT

Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD198↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (kcat/KM) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.


Subject(s)
Amino Acids/metabolism , Caspase 7/metabolism , Amino Acid Sequence , Amino Acids/genetics , Caspase 7/genetics , Caspase 7/isolation & purification , Cloning, Molecular , Kinetics , Mutagenesis, Site-Directed
16.
Front Pharmacol ; 7: 312, 2016.
Article in English | MEDLINE | ID: mdl-27746730

ABSTRACT

With multiple omics strategies being applied to several cancer genomics projects, researchers have the opportunity to develop a rational planning of targeted cancer therapy. The investigation of such numerous and diverse pharmacogenomic datasets is a complex task. It requires biological knowledge and skills on a set of tools to accurately predict signaling network and clinical outcomes. Herein, we describe Web-based in silico approaches user friendly for exploring integrative studies on cancer biology and pharmacogenomics. We briefly explain how to submit a query to cancer genome databases to predict which genes are significantly altered across several types of cancers using CBioPortal. Moreover, we describe how to identify clinically available drugs and potential small molecules for gene targeting using CellMiner. We also show how to generate a gene signature and compare gene expression profiles to investigate the complex biology behind drug response using Connectivity Map. Furthermore, we discuss on-going challenges, limitations and new directions to integrate molecular, biological and epidemiological information from oncogenomics platforms to create hypothesis-driven projects. Finally, we discuss the use of Patient-Derived Xenografts models (PDXs) for drug profiling in vivo assay. These platforms and approaches are a rational way to predict patient-targeted therapy response and to develop clinically relevant small molecules drugs.

17.
Mediators Inflamm ; 2016: 9523628, 2016.
Article in English | MEDLINE | ID: mdl-27313405

ABSTRACT

Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4(+) and CD8(+) T effectors and CD4(+)CD25(+) T-regulatory cells (Tregs). At postthymic compartments, the CD4(+) T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-ß- (TGF-ß-) producing CD4(+) T-cells (Th3). Tregs represent only a small fraction, 5-10% in mice and 1-2% in humans, of the overall CD4(+) T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Humans , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphoid Tissue/cytology , Mice , Th1 Cells/cytology , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/immunology , Th2 Cells/cytology , Th2 Cells/immunology , Thymocytes/cytology , Thymocytes/immunology
18.
Springerplus ; 5: 619, 2016.
Article in English | MEDLINE | ID: mdl-27330885

ABSTRACT

Adult skeletal tissue is composed of heterogeneous population of cells that constantly self-renew by means of a controlled process of activation and proliferation of tissue-resident stem cells named satellite cells. Many growth factors, cytokines and myokines produced by skeletal muscle cells play critical roles in local regulation of the inflammatory process and skeletal muscle regeneration during different pathological conditions. IL-6 is a pleiotropic cytokine released in large amount during infection, autoimmunity and cancer. Low levels of IL-6 can promote activation of satellite cells and myotube regeneration while chronically elevated production promote skeletal muscle wasting. These distinct effects may be explained by a crosstalk of the IL-6/IL-6 receptor and gp130 trans-signaling pathway that oppose to regenerative and anti-inflammatory of the classical IL-6 receptor signaling pathway. Here we discuss on potential therapeutic strategies using monoclonal antibodies to IL-6R for the treatment of skeletal muscle wasting and cachexia. We also highlight on the IL-6/JAK/STAT and FGF/p38αß MAPK signaling pathways in satellite cell activation and the use of protein kinase inhibitors for tailoring and optimizing satellite cell proliferation during the skeletal muscle renewal. Future investigations on the roles of the IL-6 classical and trans-signaling pathways in both immune and non-immune cells in skeletal muscle tissue will provide new basis for therapeutic approaches to reverse atrophy and degeneration of skeletal muscles in cancer and inflammatory diseases.

19.
Front Microbiol ; 6: 1050, 2015.
Article in English | MEDLINE | ID: mdl-26500616

ABSTRACT

The human body is the residence of a large number of commensal (non-pathogenic) and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system, and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics) as well as phages engineered with CRISPR/Cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community) and common diseases (e.g., diabetes and obesity). The designing and production of pharmaceuticals based on our own body's microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies.

20.
Mediators Inflamm ; 2015: 128076, 2015.
Article in English | MEDLINE | ID: mdl-26491219

ABSTRACT

Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents) or intracellular (DNA damage and Ca(2+) overload) stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER), cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identified caspase-8, flip, and fadd genes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1), RIPK3, and the mixed kinase domain-like (MLKL) for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice.


Subject(s)
Necrosis/physiopathology , Animals , Apoptosis/physiology , Caspase 8/genetics , Caspase 8/metabolism , DNA Damage/genetics , DNA Damage/physiology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Humans , Mice , Mice, Knockout , Necrosis/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...