Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
2.
Am J Physiol Gastrointest Liver Physiol ; 323(2): G114-G125, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35727919

ABSTRACT

Patients with acute-on-chronic liver failure (ACLF) are at risk of developing acute hepatic decompensation and organ failures with an unraveled complex mechanism. An altered immune response toward insults in cirrhotic compared with healthy livers may contribute to the ACLF development. Therefore, we aim to investigate the differences in inflammatory responses between cirrhotic and healthy livers using human precision-cut liver slices (PCLSs) upon the lipopolysaccharide (LPS) challenge. PCLSs prepared from livers of patients with cirrhosis or healthy donors of liver transplantation were incubated ex vivo with or without LPS for up to 48 h. Viability test, qRT-PCR, and multiplex cytokine assay were performed. Regulation of the LPS receptors during incubation or with LPS challenge differed between healthy versus cirrhotic PCLSs. LPS upregulated TLR-2 in healthy PCLSs solely (P < 0.01). Culturing for 48 h induced a stronger inflammatory response in the cirrhotic than healthy PCLS. Upon LPS stimulation, cirrhotic PCLSs secreted more proinflammatory cytokines (IL-8, IL-6, TNF-α, eotaxin, and VEGF) significantly and less anti-inflammatory cytokine (IL-1ra) than those of healthy. In summary, cirrhotic PCLSs released more proinflammatory and less anti-inflammatory cytokines after LPS stimuli than healthy, leading to dysregulated inflammatory response. These events could possibly resemble the liver immune response in ACLF.NEW & NOTEWORTHY Precision-cut liver slices (PCLSs) model provides a unique platform to investigate the different immune responses of healthy versus cirrhotic livers in humans. Our data show that cirrhotic PCLSs exhibit excessive inflammatory response accompanied by a lower anti-inflammatory cytokine release in response to LPS; a better understanding of this alteration may guide the novel therapeutic approaches to mitigate the excessive inflammation during the onset of acute-on-chronic liver failure.


Subject(s)
Acute-On-Chronic Liver Failure , Cytokines , Humans , Lipopolysaccharides/pharmacology , Liver , Liver Cirrhosis
3.
Cell Physiol Biochem ; 56(1): 28-38, 2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35060690

ABSTRACT

BACKGROUND/AIMS: Osteoprotegerin (OPG) is a profibrotic mediator produced by myofibro-blasts under influence of transforming growth factor ß (TGFß). Its expression in experimental models of liver fibrosis correlates well with disease severity and treatment responses. The regulation of OPG in liver tissue is largely unknown and we therefore set out to elucidate which growth factors/interleukins associated with fibrosis induce OPG and through which pathways. METHODS: Precision-cut liver slices of wild type and STAT6-deficient mice and 3T3 fibroblasts were used to investigate the effects of TGFß, interleukin (IL) 13 (IL13), IL1ß, and platelet-derived growth factor BB (PDGF-BB) on expression of OPG. OPG protein was measure by ELISA, whereas OPG mRNA and expression of other relevant genes was measured by qPCR. RESULTS: In addition to TGFß, only IL13 and not PDGF-BB or IL1ß could induce OPG expression in 3T3 fibroblasts and liver slices. This IL13-dependent induction was not shown in liver slices of STAT6-deficient mice and when wild type slices were cotreated with TGFß receptor 1 kinase inhibitor galunisertib, STAT6 inhibitor AS1517499, or AP1 inhibitor T5224. This suggests that the OPG-inducing effect of IL13 is mediated through IL13 receptor α1-activation and subsequent STAT6-dependent upregulation of IL13 receptor α2, which in turn activates AP1 and induces production of TGFß and subsequent production of OPG. CONCLUSION: We have shown that IL13 induces OPG release by liver tissue through a TGFß-dependent pathway involving both the α1 and the α2 receptor of IL13 and transcription factors STAT6 and AP1. OPG may therefore be a novel target for the treatment liver fibrosis as it is mechanistically linked to two important regulators of fibrosis in liver, namely IL13 and TGFß1.


Subject(s)
Gene Expression Regulation , Interleukin-13/metabolism , Liver Cirrhosis/metabolism , Liver/metabolism , Osteoprotegerin/biosynthesis , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Female , Male , Mice
4.
Cells ; 9(12)2020 12 17.
Article in English | MEDLINE | ID: mdl-33348845

ABSTRACT

Alkaline phosphatase (AP) activity is highly upregulated in plasma during liver diseases. Previously, we demonstrated that AP is able to detoxify lipopolysaccharide (LPS) by dephosphorylating its lipid A moiety. Because a role of gut-derived LPS in liver fibrogenesis has become evident, we now examined the relevance of phosphate groups in the lipid A moiety in this process. The effects of mono-phosphoryl and di-phosphoryl lipid A (MPLA and DPLA, respectively) were studied in vitro and LPS-dephosphorylating activity was studied in normal and fibrotic mouse and human livers. The effects of intestinal AP were studied in mice with CCL4-induced liver fibrosis. DPLA strongly stimulated fibrogenic and inflammatory activities in primary rat hepatic stellate cells (rHSCs) and RAW264.7 macrophages with similar potency as full length LPS. However, MPLA did not affect any of the parameters. LPS-dephosphorylating activity was found in mouse and human livers and was strongly increased during fibrogenesis. Treatment of fibrotic mice with intravenous intestinal-AP significantly attenuated intrahepatic desmin+- and αSMA+ -HSC and CD68+- macrophage accumulation. In conclusion, the lack of biological activity of MPLA, contrasting with the profound activities of DPLA, shows the relevance of LPS-dephosphorylating activity. The upregulation of LPS-dephosphorylating activity in fibrotic livers and the protective effects of exogenous AP during fibrogenesis indicate an important physiological role of intestinal-derived AP during liver fibrosis.


Subject(s)
Hepatic Stellate Cells/drug effects , Lipid A/metabolism , Lipopolysaccharides/pharmacology , Alkaline Phosphatase/metabolism , Animals , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Phosphorylation/drug effects , RAW 264.7 Cells , Rats , Up-Regulation/drug effects
5.
Pharmaceutics ; 12(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455750

ABSTRACT

Osteoprotegerin (OPG) serum levels are associated with liver fibrogenesis and have been proposed as a biomarker for diagnosis. However, the source and role of OPG in liver fibrosis are unknown, as is the question of whether OPG expression responds to treatment. Therefore, we aimed to elucidate the fibrotic regulation of OPG production and its possible function in human and mouse livers. OPG levels were significantly higher in lysates of human and mouse fibrotic livers compared to healthy livers. Hepatic OPG expression localized in cirrhotic collagenous bands in and around myofibroblasts. Single cell sequencing of murine liver cells showed hepatic stellate cells (HSC) to be the main producers of OPG in healthy livers. Using mouse precision-cut liver slices, we found OPG production induced by transforming growth factor ß1 (TGFß1) stimulation. Moreover, OPG itself stimulated expression of genes associated with fibrogenesis in liver slices through TGFß1, suggesting profibrotic activity of OPG. Resolution of fibrosis in mice was associated with decreased production of OPG compared to ongoing fibrosis. OPG may stimulate fibrogenesis through TGFß1 and is associated with the degree of fibrogenesis. It should therefore be investigated further as a possible drug target for liver fibrosis or biomarker for treatment success of novel antifibrotics.

6.
Chem Commun (Camb) ; 56(44): 5941-5944, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32347235

ABSTRACT

Targeted epitope-based mass spectrometry imaging (MSI) utilizes laser cleavable mass-tags bound to targeting moieties for detecting proteins in tissue sections. Our work constitutes the first proof-of-concept of a novel laser desorption ionization (LDI)-MSI strategy using photocleavable Ru(ii) polypyridine complexes as mass-tags for imaging of integrins αvß3 in human cancer tissues.


Subject(s)
Head and Neck Neoplasms/metabolism , Integrin alphaVbeta3/metabolism , Peptides, Cyclic/pharmacology , Pyridines/pharmacology , Ruthenium/pharmacology , Humans , Mass Spectrometry/methods , Peptides, Cyclic/chemistry , Pyridines/chemistry , Ruthenium/chemistry
7.
Pharmaceutics ; 12(3)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244897

ABSTRACT

The pivotal cell involved in the pathogenesis of liver fibrosis, i.e., the activated hepatic stellate cell (HSC), has a wide range of activities during the initiation, progression and even regression of the disease. These HSC-related activities encompass cellular activation, matrix synthesis and degradation, proliferation, contraction, chemotaxis and inflammatory signaling. When determining the in vitro and in vivo effectivity of novel antifibrotic therapies, the readout is currently mainly based on gene and protein levels of α-smooth muscle actin (α-SMA) and the fibrillar collagens (type I and III). We advocate for a more comprehensive approach in addition to these markers when screening potential antifibrotic drugs that interfere with HSCs. Therefore, we aimed to develop a gene panel for human in vitro and ex vivo drug screening models, addressing each of the HSC-activities with at least one gene, comprising, in total, 16 genes. We determined the gene expression in various human stellate cells, ranging from primary cells to cell lines with an HSC-origin, and human liver slices and stimulated them with two key profibrotic factors, i.e., transforming growth factor ß (TGFß) or platelet-derived growth factor BB (PDGF-BB). We demonstrated that freshly isolated HSCs showed the strongest and highest variety of responses to these profibrotic stimuli, in particular following PDGF-BB stimulation, while cell lines were limited in their responses. Moreover, we verified these gene expression profiles in human precision-cut liver slices and showed similarities with the TGFß- and PDGF-BB-related fibrotic responses, as observed in the primary HSCs. With this study, we encourage researchers to get off the beaten track when testing antifibrotic compounds by including more HSC-related markers in their future work. This way, potential compounds will be screened more extensively, which might increase the likelihood of developing effective antifibrotic drugs.

8.
Front Med (Lausanne) ; 7: 617261, 2020.
Article in English | MEDLINE | ID: mdl-33409288

ABSTRACT

Biliary atresia (BA) is a rare cholangiopathy of infancy in which the bile ducts obliterate, leading to profound cholestasis and liver fibrosis. BA is hypothesized to be caused by a viral insult that leads to over-activation of the immune system. Patients with BA are surgically treated with a Kasai portoenterostomy (KPE), which aims to restore bile flow from the liver to the intestines. After KPE, progressive liver fibrosis is often observed in BA patients, even despite surgical success and clearance of their jaundice. The innate immune response is involved during the initial damage to the cholangiocytes and further differentiation of the adaptive immune response into a T-helper 1 cell (Th1) response. Multiple studies have shown that there is continuing elevation of involved cytokines that can lead to the progressive liver fibrosis. However, the mechanism by which the progressive injury occurs is not fully elucidated. Recently, matrix metalloproteinase-7 (MMP-7) has been investigated to be used as a biomarker to diagnose BA. MMPs are involved in extracellular matrix (ECM) turnover, but also have non-ECM related functions. The role of MMP-7 and other MMPs in liver fibrosis is just starting to be elucidated. Multiple studies have shown that serum MMP-7 measurements are able to accurately diagnose BA in a cohort of cholestatic patients while hepatic MMP-7 expression correlated with BA-related liver fibrosis. While the mechanism by which MMP-7 can be involved in the pathophysiology of BA is unclear, MMP-7 has been investigated in other fibrotic pathologies such as renal and idiopathic pulmonary fibrosis. MMP-7 is involved in Wnt/ß-catenin signaling, reducing cell-to-cell contact by shedding of E-cadherin, amplifying inflammation and fibrosis via osteopontin (OPN) and TNF-α while it also appears to play a role in induction of angiogenesis This review aims to describe the current understandings of the pathophysiology of BA. Subsequently, we describe how MMP-7 is involved in other pathologies, such as renal and pulmonary fibrosis. Then, we propose how MMP-7 can potentially be involved in BA. By doing this, we aim to describe the putative role of MMP-7 as a prognostic biomarker in BA and to provide possible new therapeutic and research targets that can be investigated in the future.

9.
Sci Rep ; 9(1): 2256, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783172

ABSTRACT

Rho-kinase (ROCK) activation in hepatic stellate cells (HSC) is a key mechanism promoting liver fibrosis and portal hypertension (PTH). Specific delivery of ROCK-inhibitor Y-27632 (Y27) to HSC targeting mannose-6-phosphate-receptors reduces portal pressure and fibrogenesis. In decompensated cirrhosis, presence of ascites is associated with reduced renal perfusion. Since in cirrhosis, platelet-derived growth factor receptor beta (PDGFRß) is upregulated in the liver as well as the kidney, this study coupled Y27 to human serum albumin (HSA) substituted with PDGFRß-recognizing peptides (pPB), and investigated its effect on PTH in cirrhotic rats. In vitro collagen contraction assays tested biological activity on LX2 cells. Hemodynamics were analyzed in BDL and CCl4 cirrhotic rats 3 h, 6 h and 24 h after i.v. administration of Y27pPBHSA (0.5/1 mg/kg b.w). Phosphorylation of moesin and myosin light chain (MLC) assessed ROCK activity in liver, femoral muscle, mesenteric artery, kidney and heart. Three Y27 molecules were coupled to pPBHSA as confirmed by HPLC/MS, which was sufficient to relax LX2 cells. In vivo, Y27pPBHSA-treated rats exhibited lower portal pressure, hepatic vascular resistance without effect on systemic vascular resistance, but a tendency towards lower cardiac output compared to non-treated cirrhotic rats. Y27pPBHSA reduced intrahepatic resistance by reduction of phosphorylation of moesin and MLC in Y27pPBHSA-treated cirrhotic rats. Y27pPBHSA was found in the liver of rats up to 6 hours after its injection, in the HSC demonstrated by double-immunostainings. Interestingly, Y27pPBHSA increased renal arterial flow over time combined with an antifibrotic effect as shown by decreased renal acta2 and col1a1 mRNA expression. Therefore, targeting the ROCK inhibitor Y27 to PDGFRß decreases portal pressure with potential beneficial effects in the kidney. This unique approach should be tested in human cirrhosis.


Subject(s)
Drug Carriers , Enzyme Inhibitors , Kidney/blood supply , Liver Cirrhosis , Portal Pressure/drug effects , Serum Albumin, Human , rho-Associated Kinases/antagonists & inhibitors , Animals , Drug Carriers/chemistry , Drug Carriers/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Kidney/metabolism , Kidney/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Perfusion , Rats , Rats, Sprague-Dawley , Serum Albumin, Human/chemistry , Serum Albumin, Human/pharmacology , rho-Associated Kinases/metabolism
10.
J Pharmacol Exp Ther ; 363(2): 126-135, 2017 11.
Article in English | MEDLINE | ID: mdl-28864467

ABSTRACT

Exchange protein activated by cAMP (Epac-1) is an important signaling mechanism for cAMP-mediated effects, yet factors that change Epac-1 levels are unknown. Such factors are relevant because it has been postulated that Epac-1 directly affects fibrogenesis. Prostaglandin E2 (PGE2) is a well-known cAMP activator, and we therefore studied the effects of this cyclo-oxygenase product on Epac-1 expression and on fibrogenesis within the liver. Liver fibrosis was induced by 8 weeks carbon tetrachloride (CCL4) administration to mice. In the last 2 weeks, mice received vehicle, PGE2, the cyclo-oxygenase-2 inhibitor niflumic acid (NFA), or PGE2 coupled to cell-specific carriers to hepatocytes, Kupffer cells, or hepatic stellate cells (HSC). Results showed antifibrotic effects of PGE2 and profibrotic effects of NFA in CCL4 mice. Western blot analysis revealed reduced Epac-1 protein expression in fibrotic livers of mice and humans compared with healthy livers. PGE2 administration to fibrotic mice completely restored intrahepatic Epac-1 levels and also led to reduced Rho kinase activity, a downstream target of Epac-1. Cell-specific delivery of PGE2 to either hepatocytes, Kupffer cells, or HSC identified the latter cell as the key player in the observed effects on Epac-1 and Rho kinase. No significant alterations in protein kinase A expressions were found. In primary isolated HSC, PGE2 elicited Rap1 translocation reflecting Epac-1 activation, and Epac-1 agonists attenuated platelet-derived growth factor-induced proliferation and migration of these cells. These studies demonstrate that PGE2 enhances Epac-1 activity in HSC, which is associated with significant changes in (myo)fibroblast activities in vitro and in vivo. Therefore, Epac-1 is a potential target for antifibrotic drugs.


Subject(s)
Dinoprostone/pharmacology , Guanine Nucleotide Exchange Factors/biosynthesis , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/prevention & control , Up-Regulation/physiology , Adolescent , Adult , Aged , Animals , Cells, Cultured , Child , Dinoprostone/therapeutic use , Female , Hep G2 Cells , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Humans , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred BALB C , Middle Aged , NIH 3T3 Cells , Rats , Rats, Wistar , Up-Regulation/drug effects , Young Adult
11.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G219-G227, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28057611

ABSTRACT

WNT-5A is a secreted growth factor that belongs to the noncanonical members of the Wingless-related MMTV-integration family. Previous studies pointed to a connection between WNT-5A and the fibrogenic factor TGF-ß warranting further studies into the functional role of WNT-5A in liver fibrosis. Therefore, we studied WNT-5A expressions in mouse and human fibrotic livers and examined the relation between WNT-5A and various fibrosis-associated growth factors, cytokines, and extracellular matrix proteins. WNT-5A gene and protein expressions were significantly increased in fibrotic mouse and human livers compared with healthy livers. Regression or therapeutic intervention in mice resulted in decreased hepatic WNT-5A levels paralleled by lower collagen levels. Immunohistochemical analysis showed WNT-5A staining in fibrotic septa colocalizing with desmin staining indicating WNT-5A expression in myofibroblasts. In vitro studies confirmed WNT-5A expression in this cell type and showed that TGF-ß significantly enhanced WNT-5A expression in contrast to PDGF-BB and proinflammatory cytokines IL-1ß and TNF-α. Additionally, TGF-ß induces the expression of the WNT receptors FZD2 and FZD8. After silencing of WNT-5A, reduced levels of collagen type I, vimentin, and fibronectin in TGF-ß-stimulated myofibroblasts were measured compared with nonsilencing siRNA-treated controls. Interestingly, the antifibrotic cytokine IFNγ suppressed WNT-5A in vitro and in vivo. IFNγ-treated fibrotic mice showed significantly less WNT-5A expression compared with untreated fibrotic mice. In conclusion, WNT-5A paralleled collagen I levels in fibrotic mouse and human livers. WNT-5A expression in myofibroblasts is induced by the profibrotic factor TGF-ß and plays an important role in TGF-ß-induced regulation of fibrotic matrix proteins, whereas its expression can be reversed upon treatment, both in vitro and in vivo.NEW & NOTEWORTHY This study describes the localization and functional role of WNT-5A in human and mouse fibrotic livers. Hepatic WNT-5A expression parallels collagen type I expression. In vivo and in vitro, the myofibroblasts were identified as the key hepatic cells producing WNT-5A. WNT-5A is under control of TGF-ß and its activities are primarily profibrotic.


Subject(s)
Liver Cirrhosis/metabolism , Liver/metabolism , Transforming Growth Factor beta/metabolism , Wnt-5a Protein/metabolism , Animals , Cell Line , Collagen/metabolism , Desmin/metabolism , Gene Silencing , Humans , Interferon-gamma/pharmacology , Interleukin-1beta/metabolism , Liver/drug effects , Liver/pathology , Liver Cirrhosis/pathology , Mice , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Signal Transduction/drug effects , Wnt-5a Protein/genetics
12.
Oncotarget ; 7(34): 54240-54252, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27509062

ABSTRACT

Renal fibrosis cannot be adequately treated since anti-fibrotic treatment is lacking. Interferon-γ is a pro-inflammatory cytokine with anti-fibrotic properties. Clinical use of interferon-γ is hampered due to inflammation-mediated systemic side effects. We used an interferon-γ peptidomimetic (mimγ) lacking the extracellular IFNγReceptor recognition domain, and coupled it to the PDGFßR-recognizing peptide BiPPB. Here we tested the efficacy of mimγ-BiPPB (referred to as "Fibroferon") targeted to PDGFßR-overexpressing interstitial myofibroblasts to attenuate renal fibrosis without inducing inflammation-mediated side effects in the mouse unilateral ureter obstruction model.Unilateral ureter obstruction induced renal fibrosis characterized by significantly increased α-SMA, TGFß1, fibronectin, and collagens I and III protein and/or mRNA expression. Fibroferon treatment significantly reduced expression of these fibrotic markers. Compared to full-length IFNγ, anti-fibrotic effects of Fibroferon were more pronounced. Unilateral ureter obstruction-induced lymphangiogenesis was significantly reduced by Fibroferon but not full-length IFNγ. In contrast to full-length IFNγ, Fibroferon did not induce IFNγ-related side-effects as evidenced by preserved low-level brain MHC II expression (similar to vehicle), lowered plasma triglyceride levels, and improved weight gain after unilateral ureter obstruction.In conclusion, compared to full-length IFNγ, the IFNγ-peptidomimetic Fibroferon targeted to PDGFßR-overexpressing myofibroblasts attenuates renal fibrosis in the absence of IFNγ-mediated adverse effects.


Subject(s)
Interferon-gamma/therapeutic use , Kidney/pathology , Lymphangiogenesis/drug effects , Myofibroblasts/metabolism , Peptidomimetics/therapeutic use , Ureteral Obstruction/drug therapy , Animals , Extracellular Matrix/metabolism , Fibrosis , Male , Mice , Mice, Inbred C57BL , Receptor, Platelet-Derived Growth Factor beta/metabolism
13.
Front Med (Lausanne) ; 2: 81, 2015.
Article in English | MEDLINE | ID: mdl-26618160

ABSTRACT

Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs, account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM) proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e., antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behavior-stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behavior in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review, we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behavior.

14.
Front Med (Lausanne) ; 2: 72, 2015.
Article in English | MEDLINE | ID: mdl-26501061

ABSTRACT

Cytokines, growth factors, and other locally produced mediators play key roles in the regulation of disease progression. During liver fibrosis, these mediators orchestrate the balance between pro- and antifibrotic activities as exerted by the hepatic cells. Two important players in this respect are the profibrotic mediator platelet-derived growth factor BB (PDGF-BB) and the antifibrotic cytokine interferon gamma (IFNγ). PDGF-BB, produced by many resident and infiltrating cells, causes extensive proliferation, migration, and contraction of hepatic stellate cells (HSCs) and myofibroblasts. These cells are the extracellular matrix-producing hepatic cells and they highly express the PDGFß receptor. On the other hand, IFNγ is produced by natural killer cells in fibrotic livers and is endowed with proinflammatory, antiviral, and antifibrotic activities. This cytokine attracted much attention as a possible therapeutic compound in fibrosis. However, clinical trials yielded disappointing results because of low efficacy and adverse effects, most likely related to the dual role of IFNγ in fibrosis. In our studies, we targeted the antifibrotic IFNγ to the liver myofibroblasts. For that, we altered the cell binding properties of IFNγ, by delivery of the IFNγ-nuclear localization sequence to the highly expressed PDGFß receptor using a PDGFß receptor recognizing peptide, thereby creating a construct referred to as "Fibroferon" (i.e., fibroblast-targeted interferon γ). In recent years, we demonstrated that HSC-specific delivery of IFNγ increased its antifibrotic potency and improved its general safety profile in vivo, making Fibroferon highly suitable for the treatment of (fibrotic) diseases associated with elevated PDGFß receptor expression. The present review summarizes the knowledge on these two key mediators, PDGF-BB and IFNγ, and outlines how we used this knowledge to create the cell-specific antifibrotic compound Fibroferon containing parts of both of these mediators.

15.
Front Immunol ; 5: 430, 2014.
Article in English | MEDLINE | ID: mdl-25250030

ABSTRACT

Macrophages have been found to both promote liver fibrosis and contribute to its resolution by acquiring different phenotypes based on signals from the micro-environment. The best-characterized phenotypes in the macrophage spectrum are labeled M1 (classically activated) and M2 (alternatively activated). Until now the in situ localization of these phenotypes in diseased livers is poorly described. In this study, we therefore aimed to localize and quantify M1- and M2-dominant macrophages in diseased mouse and human livers. The scarred collagen-rich areas in cirrhotic human livers and in CCl4-damaged mouse livers contained many macrophages. Though total numbers of macrophages were higher in fibrotic livers, the number of parenchymal CD68-positive macrophages was significantly lower as compared to normal. Scar-associated macrophages were further characterized as either M1-dominant (IRF-5 and interleukin-12) or M2-dominant (CD206, transglutaminase-2, and YM-1) and significantly higher numbers of both of these were detected in diseased livers as compared to healthy human and mouse livers. Interestingly, in mouse, livers undergoing resolution of fibrosis, the total number of CD68(+) macrophages was significantly lower compared to their fibrotic counterparts. M2-dominant (YM-1) macrophages were almost completely gone in livers undergoing resolution, while numbers of M1-dominant (IRF-5) macrophages were almost unchanged and the proteolytic activity (MMP9) increased. In conclusion, this study shows the distribution of macrophage subsets in livers of both human and murine origin. The presence of M1- and M2-dominant macrophages side by side in fibrotic lesions suggests that both are involved in fibrotic responses, while the persistence of M1-dominant macrophages during resolution may indicate their importance in regression of fibrosis. This study emphasizes that immunohistochemical detection of M1/M2-dominant macrophages provides valuable information in addition to widely used flow cytometry and gene analysis.

16.
Drug Discov Today ; 18(23-24): 1237-42, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23732178

ABSTRACT

Liver fibrosis is a complex disease affecting millions of people world-wide. It involves the activation of several cell types whose activities are tightly controlled by endogenous mediators. No pharmacotherapy is available for this disease, despite the fact that many experimental drugs are very effective in vitro and the liver is easily accessible for most drugs. Our review provides arguments showing that cell-selectivity is essential for most antifibrotics. Several cell-specific drug carriers targeting the key pathogenic liver cells are discussed with special focus on hepatic stellate cells and fibroblast-like cells. Since endogenous mediators represent a powerful set of tools to modify the pathogenic process, this review focuses on these mediators as therapeutics and the problems and pitfalls associated with the use of such biologicals.


Subject(s)
Biological Products/administration & dosage , Drug Design , Liver Cirrhosis/drug therapy , Animals , Biological Products/therapeutic use , Drug Carriers , Drug Delivery Systems , Fibroblasts/pathology , Hepatic Stellate Cells/pathology , Humans , Liver Cirrhosis/epidemiology , Liver Cirrhosis/physiopathology
17.
PLoS One ; 8(2): e56442, 2013.
Article in English | MEDLINE | ID: mdl-23441194

ABSTRACT

Transforming growth factor-ß (TGF-ß) is a major pro-fibrotic cytokine, causing the overproduction of extracellular matrix molecules in many fibrotic diseases. Inhibition of its type-I receptor (ALK5) has been shown to effectively inhibit fibrosis in animal models. However, apart from its pro-fibrotic effects, TGF-ß also has a regulatory role in the immune system and influences tumorigenesis, which limits the use of inhibitors. We therefore explored the cell-specific delivery of an ALK5-inhibitor to hepatic stellate cells, a key cell in the development of liver fibrosis. We synthesized a conjugate of the ALK5-inhibitor LY-364947 coupled to mannose-6-phosphate human serum albumin (M6PHSA), which binds to the insulin-like growth factor II receptor on activated HSC. The effectivity of the conjugate was evaluated in primary HSC and in an acute liver injury model in mice. In vitro, the free drug and the conjugate significantly inhibited fibrotic markers in HSC. In hepatocytes, TGF-ß-dependent signaling was inhibited by free drug, but not by the conjugate, thus showing its cell-specificity. In vivo, the conjugate localized in desmin-positive cells in the liver and not in hepatocytes or immune cells. In the acute liver injury model in mice, the conjugate reduced fibrogenic markers and collagen deposition more effectively than free drug. We conclude that we can specifically deliver an ALK5-inhibitor to HSC using the M6PHSA carrier and that this targeted drug reduces fibrogenic parameters in vivo, without affecting other cell-types.


Subject(s)
Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrroles/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Animals , Collagen/metabolism , Disease Models, Animal , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Male , Mice , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Pyrroles/administration & dosage , Pyrroles/chemistry , Rats , Receptor, Transforming Growth Factor-beta Type I , Transforming Growth Factor beta/metabolism
18.
J Hepatol ; 57(6): 1220-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22878469

ABSTRACT

BACKGROUND & AIMS: Rho-kinase activation mediates cell contraction and increases intrahepatic resistance and consequently portal pressure in liver cirrhosis. Systemic Rho-kinase inhibition decreases portal pressure in cirrhosis, but also arterial pressure. Thus, liver-specific Rho-kinase inhibition is needed. The delivery of Rho-kinase inhibitor to activated hepatic stellate cells reduces fibrosis. It might also relax these contractile cells and therewith decrease intrahepatic resistance. We tested this hypothesis by performing acute experiments in cirrhotic rats. METHODS: Cirrhosis models were CCl(4)-intoxication and bile duct ligation. Three hours after injection of the Rho-kinase inhibitor (Y26732) coupled with a carrier (mannose-6-phosphate modified human serum albumin), which targets activated hepatic stellate cells, hemodynamics were analyzed by the colored microsphere technique and direct pressure measurements. The delivery site and effect of Rho-kinase inhibitor were investigated by immunohistochemical stainings, as well as Western blot. Experiments with Rho-kinase inhibitor coupled with unmodified human serum albumin served as untargeted control. RESULTS: In both models of cirrhosis, the carrier coupled Rho-kinase inhibitor lowered the portal pressure and decreased the hepatic-portal resistance. Immunohistochemical desmin-staining showed the carrier in hepatic stellate cells. The targeted therapy decreased the expression of the phosphorylated substrate of Rho-kinase (moesin) and abolished myosin light chains phosphorylation in fibrotic septae (collagen-staining). The targeted Rho-kinase inhibitor showed no major extrahepatic effects. By contrast, the untargeted Rho-kinase inhibitor elicited severe systemic hypotension. CONCLUSIONS: Activated hepatic stellate cells are crucially involved in portal hypertension in cirrhosis. Targeting of Rho-kinase in hepatic stellate cells not only decreased fibrosis, as previously shown, but also lowers portal pressure acutely without major systemic effects as demonstrated in this study.


Subject(s)
Amides/pharmacology , Hepatic Stellate Cells/drug effects , Liver Cirrhosis, Experimental/drug therapy , Portal Pressure/drug effects , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Animals , Hepatic Stellate Cells/enzymology , Liver Cirrhosis, Experimental/physiopathology , Male , Rats , Rats, Sprague-Dawley , rho-Associated Kinases/metabolism
19.
J Control Release ; 162(1): 84-91, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22659050

ABSTRACT

Liver fibrosis represents a scar formation process as a response to chronic injury and a major cause of death worldwide. To date, no drug is available for this condition. Interleukin-10 (IL-10) has potent anti-inflammatory and antifibrotic properties but its short half-life in the circulation hampers its clinical use. Our aim was therefore to modify IL-10 with polyethylene glycol (PEG) to prolong its circulation time and enhance its effectivity. IL-10 was modified with 5 or 20 kDa PEG. The biological activity was preserved after PEGylation as assessed by inhibition of TNF-α production by macrophages. In vivo, during CCl(4)-induced fibrogenesis in mice, both 5PEG-IL-10 and 20PEG-IL-10 showed a longer circulation time compared to IL-10, which was associated with a significant increased liver accumulation. Immunohistochemical analysis of fibrotic livers of mice receiving treatment with IL-10 or its PEGylated forms, revealed a decrease in markers reflecting HSC and KC activation induced by 5PEG-IL10. Transcription levels of IL-6 were decreased upon treatment with IL-10 and both PEGylated forms, whereas IL-1ß levels were only down-regulated by 5PEGIL-10 and 20PEGIL-10. We conclude that PEGylation of IL-10 is a good strategy to attenuate liver fibrosis and that 5PEGIL-10 is the most effective conjugate.


Subject(s)
Interleukin-10/chemistry , Interleukin-10/therapeutic use , Liver Cirrhosis/drug therapy , Liver/drug effects , Polyethylene Glycols/chemistry , Animals , Carbon Tetrachloride , Cell Line , Collagen/metabolism , Half-Life , Humans , Interleukin-10/pharmacokinetics , Interleukin-10/pharmacology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Liver/immunology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/immunology
20.
J Control Release ; 161(2): 188-97, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22370583

ABSTRACT

Many serious liver diseases affecting millions of people world-wide cannot be treated despite many efforts which warrants a search for new therapeutic strategies. Potent drugs may not be effective enough in vivo or exhibit adverse effects and enhanced delivery into the target cells may improve this significantly. We aim to summarize the available options for drug delivery to the different intrahepatic cell-types. The most relevant target cells are identified for each liver disease and the strategies for drug delivery to these cells are subsequently reviewed. The review describes the use of proteins, viruses, polymers and liposomes for therapeutic purposes in various liver diseases. It is shown that to date, all resident intrahepatic cells can be reached with several different drug carriers. Much progress has been made in recent years to deliver small drug molecules, proteins and nucleic acids specifically to the key pathogenic cells in vivo. The knowledge of drug targeting gained in the past decades, combined with a proper preclinical evaluation, may bring new therapeutics to the clinic in the near future.


Subject(s)
Drug Delivery Systems , Liver Diseases/drug therapy , Animals , Bile Ducts/metabolism , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Humans , Kupffer Cells/metabolism , Liver Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...