Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2436, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499535

ABSTRACT

Parkinson's disease (PD) is closely linked to α-synuclein (α-syn) misfolding and accumulation in Lewy bodies. The PDZ serine protease HTRA1 degrades fibrillar tau, which is associated with Alzheimer's disease, and inactivating mutations to mitochondrial HTRA2 are implicated in PD. Here, we report that HTRA1 inhibits aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The protease domain of HTRA1 is necessary and sufficient for inhibiting aggregation, yet this activity is proteolytically-independent. Further, HTRA1 disaggregates preformed α-syn fibrils, rendering them incapable of seeding aggregation of endogenous α-syn, while reducing HTRA1 expression promotes α-syn seeding. HTRA1 remodels α-syn fibrils by targeting the NAC domain, the key domain catalyzing α-syn amyloidogenesis. Finally, HTRA1 detoxifies α-syn fibrils and prevents formation of hyperphosphorylated α-syn accumulations in primary neurons. Our findings suggest that HTRA1 may be a therapeutic target for a range of neurodegenerative disorders.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Amyloid/metabolism , High-Temperature Requirement A Serine Peptidase 1/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Lewy Bodies/metabolism
2.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38352315

ABSTRACT

Class-II major histocompatibility complexes (MHC-IIs) are central to the communications between CD4+ T cells and antigen presenting cells (APCs), but intrinsic structural features associated with MHC-II make it difficult to develop a general targeting system with high affinity and antigen specificity. Here, we introduce a protein platform, Targeted Recognition of Antigen-MHC Complex Reporter for MHC-II (TRACeR-II), to enable the rapid development of peptide-specific MHC-II binders. TRACeR-II has a small helical bundle scaffold and uses an unconventional mechanism to recognize antigens via a single loop. This unique antigen-recognition mechanism renders this platform highly versatile and amenable to direct structural modeling of the interactions with the antigen. We demonstrate that TRACeR-II binders can be rapidly evolved across multiple alleles, while computational protein design can produce specific binding sequences for a SARS-CoV-2 peptide of unknown complex structure. TRACeR-II sheds light on a simple and straightforward approach to address the MHC peptide targeting challenge, without relying on combinatorial selection on complementarity determining region (CDR) loops. It presents a promising basis for further exploration in immune response modulation as well as a broad range of theragnostic applications.

3.
Res Sq ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37674720

ABSTRACT

Parkinson disease (PD) is closely linked to the misfolding and accumulation of α-synuclein (α-syn) into Lewy bodies. HtrA1 is a PDZ serine protease that degrades fibrillar tau, which is associated with Alzheimer disease (AD). Further, inactivating mutations to mitochondrial HtrA2 have been implicated in PD. Here, we establish that HtrA1 inhibits the aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We demonstrate that the protease domain of HtrA1 is necessary and sufficient for inhibition of aggregation, yet this activity is independent of HtrA1 proteolytic activity. Further, we find that HtrA1 also disaggregates preformed α-syn fibrils, which may promote their clearance. Treatment of α-syn fibrils with HtrA1 renders α-syn incapable of seeding the aggregation of endogenous α-syn in mammalian biosensor cells. We find that HtrA1 remodels α-syn by specifically targeting the NAC domain, which is the key domain that catalyzes α-syn oligomerization and fibrillization. Finally, in a primary neuron model of α-syn aggregation, we show that HtrA1 and its proteolytically inactive form both detoxify α-syn and prevent the formation of hyperphosphorylated α-syn accumulations. Our findings suggest that HtrA1 prevents aggregation and promotes disaggregation of multiple disease-associated proteins, and may be a therapeutic target for treating a range of neurodegenerative disorders.

4.
Protein Sci ; 30(8): 1667-1685, 2021 08.
Article in English | MEDLINE | ID: mdl-34010483

ABSTRACT

Hsp104, a yeast protein disaggregase, can be potentiated via numerous missense mutations at disparate locations throughout the coiled-coil middle domain (MD). Potentiated Hsp104 variants can counter the toxicity and misfolding of TDP-43, FUS, and α-synuclein, proteins which are implicated in neurodegenerative disorders. However, potentiated MD variants typically exhibit off-target toxicity. Further, it has remained confounding how numerous degenerate mutations confer potentiation, hampering engineering of therapeutic Hsp104 variants. Here, we sought to comprehensively define the key drivers of Hsp104 potentiation. Using scanning mutagenesis, we iteratively studied the effects of modulation at each position in the Hsp104 MD. Screening this library to identify enhanced variants reveals that missense mutations at 26% of positions in the MD yield variants that counter FUS toxicity. Modulation of the helix 2-helix 3/4 MD interface potentiates Hsp104, whereas mutations in the analogous helix 1-2 interface do not. Surprisingly, we find that there is a higher likelihood of enhancing Hsp104 activity against human disease substrates than impairing Hsp104 native function. We find that single mutations can broadly destabilize the MD structure and lead to functional potentiation, suggesting this may be a common mechanism conferring Hsp104 potentiation. Using this approach, we have demonstrated that modulation of the MD can yield engineered variants with decreased off-target effects.


Subject(s)
Heat-Shock Proteins , Mutagenesis, Site-Directed , Protein Domains/genetics , Saccharomyces cerevisiae Proteins , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Models, Molecular , Mutation, Missense/genetics , Protein Folding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , alpha-Synuclein
5.
J Pediatr Gastroenterol Nutr ; 68(2): 225-231, 2019 02.
Article in English | MEDLINE | ID: mdl-30211842

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic TH2-assocated inflammatory condition accompanied by substantial impairments in epithelial barrier function and increased numbers of interleukin 9 (IL-9) expressing inflammatory cells. While IL-9 is known to affect barrier function in the intestine, the functional effects of IL-9 on the esophagus are unclear. Herein we aimed to understand the expression of the IL-9 receptor and effects of IL-9 on the epithelium in EoE. METHODS: We used esophageal biopsies from pediatric EoE patients with active and inactive disease to analyze the expression of the IL-9 receptor, the adherens junction protein E-cadherin and the tight junction protein claudin-1. We treated primary human esophageal epithelial cells with IL-9 to understand its effects on E-cadherin expression and function. RESULTS: Active EoE subjects had increased epithelial expression of IL-9 receptor mRNA and protein (P < 0.05) and decreased membrane bound E-cadherin (P < 0.01) and claudin-1 (P < 0.05) expression. IL-9 receptor expression and mislocalized claudin-1 positively correlated and while membrane bound E-cadherin expression negatively correlated with the degree of histologic epithelial remodeling (P < 0.05). IL-9 decreased epithelial resistance in stratified primary human esophageal epithelial cells (P < 0.01) and membrane bound E-cadherin in epithelial cell monolayers (P < 0.01). CONCLUSIONS: These data suggest that IL-9, its receptor, and its effects on E-cadherin may be important mechanisms for epithelial barrier disruption in EoE.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Eosinophilic Esophagitis/metabolism , Esophagus/metabolism , Interleukin-9/metabolism , Receptors, Interleukin-9/metabolism , Biopsy , Child , Eosinophilic Esophagitis/pathology , Epithelial Cells/metabolism , Epithelium/metabolism , Epithelium/pathology , Esophagus/pathology , Female , Humans , Male
6.
J Allergy Clin Immunol ; 138(3): 791-800.e4, 2016 09.
Article in English | MEDLINE | ID: mdl-27212082

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is an allergic disease of increasing worldwide incidence. Complications are due to tissue remodeling and involve TGF-ß1-mediated fibrosis. Plasminogen activator inhibitor 1 (PAI-1/serpinE1) can be induced by TGF-ß1, but its role in EoE is not known. OBJECTIVE: We sought to understand the expression and role of PAI-1 in patients with EoE. METHODS: We used esophageal biopsy specimens and plasma samples from control subjects and patients with EoE, primary human esophageal epithelial cells, and fibroblasts from patients with EoE in immunohistochemistry, quantitative PCR, and immunoassay experiments to understand the induction of PAI-1 by TGF-ß1, the relationship between PAI-1 and esophageal fibrosis, and the role of PAI-1 in fibrotic gene expression. RESULTS: PAI-1 expression was significantly increased in epithelial cells of biopsy specimens from patients with active EoE compared with that seen in biopsy specimens from patients with inactive EoE or control subjects (P < .001). Treatment of primary esophageal epithelial cells with recombinant TGF-ß1 increased PAI-1 transcription, intracellular protein expression, and secretion. Esophageal PAI-1 expression correlated with basal zone hyperplasia, fibrosis, and markers of esophageal remodeling, including vimentin, TGF-ß1, collagen I, fibronectin, and matrix metalloproteases, and plasma PAI-1 levels correlated with plasma TGF-ß1 levels. PAI-1 inhibition significantly decreased baseline and TGF-ß1-induced fibrotic gene expression. CONCLUSIONS: PAI-1 expression is significantly increased in the epithelium in patients with EoE and reflects fibrosis, and its inhibition decreases TGF-ß1-induced gene expression. Epithelial PAI-1 might serve as a marker of EoE severity and form part of a TGF-ß1-induced profibrotic network.


Subject(s)
Eosinophilic Esophagitis/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Transforming Growth Factor beta1/metabolism , Adolescent , Child , Child, Preschool , Eosinophilic Esophagitis/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Esophagus/cytology , Esophagus/metabolism , Esophagus/pathology , Female , Fibroblasts/metabolism , Fibrosis , Humans , Infant , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...