Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 49(11): 2475-82, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20151707

ABSTRACT

Human and other mammalian thymidylate synthase (TS) enzymes have an N-terminal extension of approximately 27 amino acids that is not present in bacterial TSs. The extension, which is disordered in all reported crystal structures of TSs, has been considered to play a primary role in protein turnover but not in catalytic activity. In mammalian cells, the variant V3A has a half-life similar to that of wild-type human TS (wt hTS) while V3T is much more stable; V3L, V3F, and V3Y have half-lives approximately half of that for wt hTS. Catalytic turnover rates for most Val3 mutants are only slightly diminished, as expected. However, two mutants, V3L and V3F, have strongly compromised dUMP binding, with K(m,app) values increased by factors of 47 and 58, respectively. For V3L, this observation can be explained by stabilization of the inactive conformation of the loop of residues 181-197, which prevents substrate binding. In the crystal structure of V3L, electron density corresponding to a leucine residue is present in a position that stabilizes the loop of residues 181-197 in the inactive conformation. Since this density is not observed in other mutants and all other leucine residues are ordered in this structure, it is likely that this density represents Leu3. In the crystal structure of a V3F.FdUMP binary complex, the nucleotide is bound in an alternative mode to that proposed for the catalytic complex, indicating that the high K(m,app) value is caused not by stabilization of the inactive conformer but by substrate binding in a nonproductive, inhibitory site. These observations show that the N-terminal extension affects the conformational state of the hTS catalytic region. Each of the mechanisms leading to the high K(m,app) values can be exploited to facilitate design of compounds acting as allosteric inhibitors of hTS.


Subject(s)
Amino Acid Substitution , Intracellular Space/enzymology , Thymidylate Synthase/chemistry , Thymidylate Synthase/metabolism , Valine , Animals , Cell Line , Cricetinae , Crystallography, X-Ray , Enzyme Stability , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Thymidylate Synthase/genetics , Transformation, Bacterial
2.
Protein Sci ; 18(8): 1628-36, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19569192

ABSTRACT

Loop 181-197 of human thymidylate synthase (hTS) populates two major conformations, essentially corresponding to the loop flipped by 180 degrees . In one of the conformations, the catalytic Cys195 residue lies distant from the active site making the enzyme inactive. Ligands stabilizing this inactive conformation may function as allosteric inhibitors. To facilitate the search for such inhibitors, we have expressed and characterized several mutants designed to shift the equilibrium toward the inactive conformer. In most cases, the catalytic efficiency of the mutants was only somewhat impaired with values of k(cat)/K(m) reduced by factors in a 2-12 range. One of the mutants, M190K, is however unique in having the value of k(cat)/K(m) smaller by a factor of approximately 7500 than the wild type. The crystal structure of this mutant is similar to that of the wt hTS with loop 181-197 in the inactive conformation. However, the direct vicinity of the mutation, residues 188-194 of this loop, assumes a different conformation with the positions of C(alpha) shifted up to 7.2 A. This affects region 116-128, which became ordered in M190K while it is disordered in wt. The conformation of 116-128 is however different than that observed in hTS in the active conformation. The side chain of Lys190 does not form contacts and is in solvent region. The very low activity of M190K as compared to another mutant with a charged residue in this position, M190E, suggests that the protein is trapped in an inactive state that does not equilibrate easily with the active conformer.


Subject(s)
Thymidylate Synthase/chemistry , Crystallization , Crystallography, X-Ray , Enzyme Stability , Humans , Kinetics , Ligands , Mutation , Protein Conformation , Thymidylate Synthase/genetics , Thymidylate Synthase/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...