Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Immunol ; 193(2): 889-900, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24928993

ABSTRACT

Expression of the CTLA-4 gene is absolutely required for immune homeostasis, but aspects of its molecular nature remain undefined. In particular, the characterization of the soluble CTLA-4 (sCTLA-4) protein isoform generated by an alternatively spliced mRNA of CTLA4 lacking transmembrane-encoding exon 3 has been hindered by the difficulty in distinguishing it from the transmembrane isoform of CTLA-4, Tm-CTLA-4. In the current study, sCTLA-4 has been analyzed using novel mAbs and polyclonal Abs specific for its unique C-terminal amino acid sequence. We demonstrate that the sCTLA-4 protein is secreted at low levels following the activation of primary human CD4(+) T cells and is increased only rarely in the serum of autoimmune patients. Unexpectedly, during our studies aimed to define the kinetics of sCTLA-4 produced by activated human CD4(+) T cells, we discovered that Tm-CTLA-4 is associated with microvesicles produced by the activated cells. The functional roles of sCTLA-4 and microvesicle-associated Tm-CTLA-4 warrant further investigation, especially as they relate to the multiple mechanisms of action described for the more commonly studied cell-associated Tm-CTLA-4.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/metabolism , Cytoplasmic Vesicles/metabolism , Membrane Glycoproteins/metabolism , Adult , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Blotting, Western , CTLA-4 Antigen/blood , CTLA-4 Antigen/genetics , Cells, Cultured , Cytoplasmic Vesicles/ultrastructure , Diabetes Mellitus, Type 1/blood , Female , Graves Disease/blood , HeLa Cells , Humans , Immunoassay , Male , Membrane Glycoproteins/blood , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Microscopy, Immunoelectron , Middle Aged , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/metabolism , Solubility , Young Adult
2.
J Immunol ; 188(9): 4644-53, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22461703

ABSTRACT

Numerous reports have demonstrated that CD4(+)CD25(+) regulatory T cells (Tregs) from individuals with a range of human autoimmune diseases, including type 1 diabetes, are deficient in their ability to control autologous proinflammatory responses when compared with nondiseased, control individuals. Treg dysfunction could be a primary, causal event or may result from perturbations in the immune system during disease development. Polymorphisms in genes associated with Treg function, such as IL2RA, confer a higher risk of autoimmune disease. Although this suggests a primary role for defective Tregs in autoimmunity, a link between IL2RA gene polymorphisms and Treg function has not been examined. We addressed this by examining the impact of an IL2RA haplotype associated with type 1 diabetes on Treg fitness and suppressive function. Studies were conducted using healthy human subjects to avoid any confounding effects of disease. We demonstrated that the presence of an autoimmune disease-associated IL2RA haplotype correlates with diminished IL-2 responsiveness in Ag-experienced CD4(+) T cells, as measured by phosphorylation of STAT5a, and is associated with lower levels of FOXP3 expression by Tregs and a reduction in their ability to suppress proliferation of autologous effector T cells. These data offer a rationale that contributes to the molecular and cellular mechanisms through which polymorphisms in the IL-2RA gene affect immune regulation, and consequently upon susceptibility to autoimmune and inflammatory diseases.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2/immunology , Polymorphism, Genetic/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Female , Haplotypes/genetics , Haplotypes/immunology , Humans , Interleukin-2/genetics , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Male , Polymorphism, Genetic/genetics , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/immunology , STAT5 Transcription Factor/metabolism , Signal Transduction/genetics , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/immunology , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...