Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 10(7): 4626-4634, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38904279

ABSTRACT

Microorganisms often live in habitats characterized by fluid flow, and their adhesion to surfaces in industrial systems or clinical settings may lead to pipe clogging, microbially influenced corrosion, material deterioration, food spoilage, infections, and human illness. Here, a novel microfluidic platform was developed to investigate biofilm formation under precisely controlled (i) cell concentration, (ii) temperature, and (iii) flow conditions. The developed platform central unit is a single-channel microfluidic flow cell designed to ensure ultrahomogeneous flow and condition in its central area, where features, e.g., with trapping properties, can be incorporated. In comparison to static and macroflow chamber assays for biofilm studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes and have better environment control and smaller sample requirements. Flow simulations and experiments with fluorescent particles were used to simulate bacteria flow in the platform cell for calculating flow velocity and direction at the microscale level. The combination of flow analysis and fluorescent strain injection in the cell showed that microtraps placed at the center of the channel were efficient in capturing bacteria at determined positions and to study how flow conditions, especially microvortices, can affect biofilm formation. The microfluidic platform exhibited improved performances in terms of homogeneity and robustness for in vitro biofilm formation. We anticipate the presented platform to be suitable for broad, versatile, and high-throughput biofilm studies at the microscale level.


Subject(s)
Biofilms , Hydrodynamics , Biofilms/growth & development , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Lab-On-A-Chip Devices , Microfluidics/methods , Microfluidics/instrumentation
2.
Lab Chip ; 23(3): 466-474, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36655759

ABSTRACT

The reliable identification and quantitation of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, an area of particular interest when attempting to diagnose and treat diseases at an early stage. We have developed a synthetic probe for targeting phosphorylated amino acids, based on core-shell submicron-sized particles consisting of a silica core, coated with a molecularly imprinted polymer (MIP) shell. The MIP layer contains a fluorescent probe crosslinker which binds selectively to phosphorylated tyrosine (pY) moieties with a significant imprinting factor (IF) and responds with a "light-up" fluorescence signal. The bead-based ratiometric detection scheme has been successfully transferred to a microfluidic chip format and its applicability to rapid assays has been exemplarily shown by discriminating a pY-terminating oligopeptide against its non-phosphorylated counterpart. Such miniaturised devices could lead to an automated pY or pY N-terminated peptide measurement system in the future. The setup combines a modular microfluidic system for amino acid derivatisation, extraction (by micropillar co-flow) and selective adsorption and detection with the fluorescent MIP core-shell particle probes. A miniaturised optical assembly for low-light fluorescence measurements was also developed, based on miniaturised opto-electronic parts and optical fibres. The emission from the MIP particles upon binding of pY or pY N-terminated peptides could be monitored in real-time.


Subject(s)
Molecular Imprinting , Molecularly Imprinted Polymers , Tyrosine , Polymers/chemistry , Microfluidics , Peptides , Fluorescent Dyes
3.
ACS Sens ; 6(1): 27-34, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33356175

ABSTRACT

Microbial contamination of fuels by fungi and bacteria presents risks of corrosion and fuel system fouling. In this work, a rapid test for the determination of microbial genomic DNA from aqueous fuel extracts is presented. It combines test strips coated with polystyrene core/mesoporous silica shell particles, to the surface of which modified fluorescent molecular beacons are covalently grafted, with a smartphone detection system. In the hairpin loop, the beacons incorporate a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA gene, which is also present to a significant extent in the 18S rRNA gene of fungi, allowing for broadband microbial detection. In the developed assay, the presence of genomic DNA extracts from bacteria and fungi down to ca. 20-50 µg L-1 induced a distinct fluorescence response. The optical read-out was adapted for on-site monitoring by combining a 3D-printed case with a conventional smartphone, taking advantage of the sensitivity of contemporary complementary metal oxide semiconductor (CMOS) detectors. Such an embedded assembly allowed to detect microbial genomic DNA in aqueous extracts down to ca. 0.2-0.7 mg L-1 and presents an important step toward the on-site uncovering of fuel contamination in a rapid and simple fashion.


Subject(s)
Bacteria , Fungi , Bacteria/genetics , DNA , RNA, Ribosomal, 16S/genetics
4.
Nat Biomed Eng ; 4(2): 148-158, 2020 02.
Article in English | MEDLINE | ID: mdl-31768002

ABSTRACT

Skin-mounted soft electronics that incorporate high-bandwidth triaxial accelerometers can capture broad classes of physiologically relevant information, including mechano-acoustic signatures of underlying body processes (such as those measured by a stethoscope) and precision kinematics of core-body motions. Here, we describe a wireless device designed to be conformally placed on the suprasternal notch for the continuous measurement of mechano-acoustic signals, from subtle vibrations of the skin at accelerations of around 10-3 m s-2 to large motions of the entire body at about 10 m s-2, and at frequencies up to around 800 Hz. Because the measurements are a complex superposition of signals that arise from locomotion, body orientation, swallowing, respiration, cardiac activity, vocal-fold vibrations and other sources, we exploited frequency-domain analysis and machine learning to obtain-from human subjects during natural daily activities and exercise-real-time recordings of heart rate, respiration rate, energy intensity and other essential vital signs, as well as talking time and cadence, swallow counts and patterns, and other unconventional biomarkers. We also used the device in sleep laboratories and validated the measurements using polysomnography.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Physiological Phenomena , Wireless Technology/instrumentation , Clavicle , Equipment Design , Exercise/physiology , Humans , Signal Processing, Computer-Assisted , Skin Physiological Phenomena , Sleep/physiology , Vibration
5.
Anal Chem ; 91(20): 12980-12987, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31525031

ABSTRACT

Chlorination procedures are commonly applied in swimming pool water and wastewater treatment, yet also in food, pharmaceutical, and paper production. The amount of chlorine in water needs to be strictly controlled to ensure efficient killing of pathogens but avoid the induction of negative health effects. Miniaturized microfluidic fluorescence sensors are an appealing approach here when aiming at online or at-site measurements. Two meso-enamine-substituted boron dipyrromethene (BODIPY) dyes were found to exhibit favorable indication properties, their reaction with hypochlorite leading to strong fluorescence enhancement. Real-time assays became possible after integration of these fluorescent probes with designed two-dimensional (2D) and three-dimensional (3D) microfluidic chips, incorporating a passive sinusoidal mixer and a microhydrocyclone, respectively. A comparison of the two microfluidic systems, including their abilities to prevent accumulation or circulation of microbubbles produced by the chemical indication reaction, showed excellent fluidic behavior for the microhydrocyclone-based device. After coupling to a miniaturized optical reader for fluorescence detection, the 2D microfluidic system showed a promising detection range of 0.04-0.5 mg L-1 while still being prone to bubble-induced fluctuations and suffering from considerably low signal gain. The microhydrocyclone-based system was distinctly more robust against gas bubbles, showed a higher signal gain, and allowed us to halve the limit of detection to 0.02 mg L-1. The use of the 3D system to quantify the chlorine content of swimming pool water samples for sensitive and quantitative chlorine monitoring was demonstrated.


Subject(s)
Boron Compounds/chemistry , Charcoal/chemistry , Chlorides/analysis , Drinking Water/analysis , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Porphobilinogen/analogs & derivatives , Chlorides/isolation & purification , Fluorescence , Fluorescent Dyes/chemistry , Halogenation , Humans , Porphobilinogen/chemistry , Spectrometry, Fluorescence
6.
Drug Test Anal ; 11(3): 492-500, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30286276

ABSTRACT

Quick but accurate testing and on-the-spot monitoring of cocaine in oral fluids and urine continues to be an important toxicological issue. In terms of drug testing, a number of devices have been introduced into the market in recent decades, notably for workplace inspection or roadside testing. However, these systems do not always fulfill the requirements in terms of reliability, especially when low cut-off levels are required. With respect to surface water, the presence of anthropogenic small organic molecules such as prescription and over-the-counter pharmaceuticals as well as illicit drugs like cannabinoids, heroin, or cocaine, has become a challenge for scientists to develop new analytical tools for screening and on-site analysis because many of them serve as markers for anthropogenic input and consumer behavior. Here, a modular approach for the detection of cocaine is presented, integrating an electrochemical enzyme-linked immunosorbent assay (ELISA) performed on antibody-grafted magnetic beads in a hybrid microfluidic sensor utilizing flexible tubing, static chip and screen-printed electrode (SPE) elements for incubation, recognition, and cyclic voltammetry measurements. A linear response of the sensor vs. the logarithm of cocaine concentration was obtained with a limit of detection of 0.15 ng/L. Within an overall assay time of 25 minutes, concentrations down to 1 ng/L could be reliably determined in water, oral fluids, and urine, the system possessing a dynamic working range up to 1 mg/L.


Subject(s)
Cocaine/analysis , Electrochemical Techniques/methods , Enzyme-Linked Immunosorbent Assay/methods , Microfluidics/instrumentation , Saliva/chemistry , Substance Abuse Detection/instrumentation , Water/chemistry , Cocaine/urine , Humans , Limit of Detection , Magnetic Phenomena , Microspheres , Substance Abuse Detection/methods
7.
J Vis Exp ; (141)2018 11 09.
Article in English | MEDLINE | ID: mdl-30474640

ABSTRACT

Three fluorescent molecular rotors of 4-dimethylamino-4-nitrostilbene (4-DNS) were investigated for their potential use as viscosity probes to indicate the content of kerosene in diesel/kerosene blends, a wide-spread activity to adulterate fuel. In solvents with low viscosity, the dyes rapidly deactivate via a so-called twisted intramolecular charge transfer state, efficiently quenching the fluorescence. Measurements of diesel/kerosene blends revealed a good linear correlation between the decrease in fluorescence and the increase of the fraction of the less viscous kerosene in diesel/kerosene blends. Immobilization of the hydroxy derivative 4-DNS-OH in cellulose paper yielded test strips that preserve the fluorescent indicator's behavior. Combination of the strips with a reader based on a smartphone and a controlling app allowed to create a simple field test. The method can reliably detect the presence of kerosene in diesel from 7 to 100%, outperforming present standard methods for diesel adulteration.


Subject(s)
Gasoline/analysis , Smartphone/instrumentation , Fluorescence , Paper
8.
Biosens Bioelectron ; 99: 244-250, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28772227

ABSTRACT

Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the selective determination of a prototype small-molecule analyte of environmental concern, 2,4-dichlorophenoxyacetic acid or 2,4-D, at nanomolar concentration directly in water samples. A tailor-made fluorescent indicator cross-linker was thus designed that translates the binding event directly into an enhanced fluorescence signal. The phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles following a RAFT (reversible addition-fragmentation chain transfer) polymerization protocol. While the indicator cross-linker outperformed its corresponding monomer twin, establishment of a phase-transfer protocol was essential to guarantee that the hydrogen bond-mediated signalling mechanism between the urea binding site on the indicator cross-linker and the carboxylate group of the analyte was still operative upon real sample analysis. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phase-transfer assay, extracting the analyte from aqueous sample droplets into the organic phase that contains the sensor particles. Real-time fluorescence determination of 2,4-D down to 20nM was realized with the system and applied for the analysis of various surface water samples collected from different parts of the world.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/isolation & purification , Biosensing Techniques , Molecular Imprinting , Water/chemistry , 2,4-Dichlorophenoxyacetic Acid/toxicity , Microfluidics , Oxazines/chemistry , Polymers/chemistry
9.
Org Biomol Chem ; 13(12): 3787-91, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25695474

ABSTRACT

A novel synthetic strategy toward highly fluorinated BODIPY dyes with exceptional photostabilities relying on sustainable gold catalysis has been developed. A key to the tailored pyrrole precursors is the gold catalysis performed in ionic liquids as the reaction medium, allowing a facile recycling of the catalysts. The dyes prepared are well-matching with the spectral windows of popular rhodamine dyes and possess high brightness while showing a distinctly higher photostability than the rhodamines especially in aprotic solvents.

10.
Photochem Photobiol Sci ; 11(11): 1737-43, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22907197

ABSTRACT

A series of fluorescent sensor molecules based on a phosphane sulfide derivative that is soluble in an organoaqueous solvent were designed and synthesized. The structure of the fluorophore has been optimized in order to have the best compromise in terms of solubility and photophysical properties. The obtained properties are in full agreement with quantum chemical calculations. A fluorescent molecular sensor containing one polyoxoethylene group has been synthesized and an efficient quenching upon mercury complexation has been observed. Finally, this sensing molecule has been introduced in a microfluidic chip in which fluorescence detection has been integrated. An efficient fluorescence response was observed upon mercury addition.


Subject(s)
Mercury/analysis , Microfluidic Analytical Techniques , Fluorescent Dyes/chemistry , Phosphatidylserines/chemistry , Solvents , Spectrometry, Fluorescence
11.
Org Lett ; 13(5): 1182-5, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21306138

ABSTRACT

The synthesis and photophysical properties of a novel fluorescent sensor are described. The phosphorus-selenium moiety allowed a selective mercury salt complexation, followed by the formation of phosphane oxide, which leads to a turn-on of the fluorescence. The sensibility and selectivity toward mercury cations were evaluated (0.18 ppb) and found to be in complete adequation with the targeted level of the World Health Organization, which makes the dye an efficient dosimeter for mercury cations.


Subject(s)
Environmental Pollutants/analysis , Fluorescent Dyes/chemical synthesis , Mercury/analysis , Organoselenium Compounds/chemical synthesis , Phosphines/chemical synthesis , Fluorescent Dyes/chemistry , Molecular Structure , Organoselenium Compounds/chemistry , Phosphines/chemistry , World Health Organization
12.
Chem Asian J ; 6(4): 1080-91, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21328699

ABSTRACT

A series of rod-shaped and related three-branched push-pull derivatives containing phosphane oxide or phosphane sulfide (PO or PS)-as an electron-withdrawing group conjugated to electron-donating groups, such as amino or ether groups, with a conjugated rod consisting of arylene-vinylene or arylene-ethynylene building blocks-were prepared. These compounds were efficiently synthesized by a Grignard reaction followed by Sonogashira coupling. Their photophysical properties including absorption, emission, time-resolved fluorescence, and two-photon absorption (TPA) were investigated with special attention to structure-property relationships. These fluorophores show high fluorescence quantum yields and solvent-dependent experiments reveal that efficient intramolecular charge transfer occurs upon excitation, thereby leading to highly polar excited states, the polarity of which can be significantly enhanced by playing on the end groups and conjugated linker. Rod-shaped and related three-branched systems show similar fluorescence properties in agreement with excitation localization on one of the push-pull branches. By using stronger electron donors or replacing the arylene-ethynylene linkers with an arylene-vinylene one induces significant redshifts of both the low-energy one-photon absorption and TPA bands. Interestingly, a major enhancement in TPA responses is observed, whereas OPA intensities are only weakly affected. Similarly, phosphane oxide derivatives show similar OPA responses than the corresponding sulfides but their TPA responses are significantly larger. Finally, the electronic coupling between dipolar branches promoted by common PO or PS acceptor moieties induces either slight enhancement of the TPA responses or broadening of the TPA band in the near infrared (NIR) region. Such behavior markedly contrasts with triphenylamine-core-mediated coupling, which gives evidence for the different types of interactions between branches.


Subject(s)
Oxides/chemistry , Phosphines/chemistry , Photons , Sulfides/chemistry , Absorption , Oxides/chemical synthesis , Sulfides/chemical synthesis
13.
J Phycol ; 36(4): 747-758, 2000 Aug 26.
Article in English | MEDLINE | ID: mdl-29542160

ABSTRACT

Sequences of the gene encoding the large subunit of RUBISCO (rbcL) for 30 genera in the six currently recognized families of conjugating green algae (Desmidiaceae, Gonatozygaceae, Mesotaeniaceae, Peniaceae, and Zygnemataceae) were analyzed using maximum parsimony and maximum likelihood; bootstrap replications were performed as a measure of support for clades. Other Charophyceae sensu Mattox and Stewart and representative land plants were used as outgroups. All analyses supported the monophyly of the conjugating green algae. The Desmidiales, or placoderm desmids, constitute a monophyletic group, with moderate to strong support for the four component families of this assemblage (Closteriaceae, Desmidiaceae, Gonatozygaceae, and Peniaceae). The analyses showed that the two families of Zygnematales (Mesotaeniaceae, Zygnemataceae), which have plesiomorphic, unornamented and unsegmented cell walls, are not monophyletic. However, combined taxa of these two traditional families may constitute a monophyletic group. Partitioning the data by codon position revealed no significant differences across all positions or between partitions of positions one and two versus position three. The trees resulting from parsimony analyses using first plus second positions versus third position differed only in topology of branches with poor bootstrap support. The tree derived from third positions only was more resolved than the tree derived from first and second positions. The rbcL-based phylogeny is largely congruent with published analyses of small subunit rDNA sequences for the Zygnematales. The molecular data do not support hypotheses of monophyly for groups of extant unicellular and filamentous or colonial desmid genera exhibiting a common cell shape. A trend is evident from simple omniradiate cell shapes to taxa with lobed cell and plastid shapes, which supports the hypothesis that chloroplast shape evolved generally from simple to complex. The data imply that multicellular placoderm desmids are monophyletic. Several anomalous placements of genera were found, including the saccoderm desmid Roya in the Gonatozygaceae and the zygnematacean Entransia in the Coleochaetales. The former is strongly supported, although the latter is not, and Entransia's phylogenetic position warrants further study.

SELECTION OF CITATIONS
SEARCH DETAIL
...