Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 14(7): 758-769, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30707489

ABSTRACT

The emergence of multidrug-resistant bacteria necessitates the identification of unique targets of intervention and compounds that inhibit their function. Gram-positive bacteria use a well-conserved tRNA-responsive transcriptional regulatory element in mRNAs, known as the T-box, to regulate the transcription of multiple operons that control amino acid metabolism. T-box regulatory elements are found only in the 5'-untranslated region (UTR) of mRNAs of Gram-positive bacteria, not Gram-negative bacteria or the human host. Using the structure of the 5'UTR sequence of the Bacillus subtilis tyrosyl-tRNA synthetase mRNA T-box as a model, in silico docking of 305 000 small compounds initially yielded 700 as potential binders that could inhibit the binding of the tRNA ligand. A single family of compounds inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria, including drug-resistant clinical isolates at minimum inhibitory concentrations (MIC 16-64 µg mL-1 ). Resistance developed at an extremely low mutational frequency (1.21×10-10 ). At 4 µg mL-1 , the parent compound PKZ18 significantly inhibited in vivo transcription of glycyl-tRNA synthetase mRNA. PKZ18 also inhibited in vivo translation of the S. aureus threonyl-tRNA synthetase protein. PKZ18 bound to the Specifier Loop in vitro (Kd ≈24 µm). Its core chemistry necessary for antibacterial activity has been identified. These findings support the T-box regulatory mechanism as a new target for antibiotic discovery that may impede the emergence of resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery , Gene Expression Regulation, Bacterial/drug effects , Gram-Positive Bacteria/drug effects , RNA, Transfer/metabolism , Small Molecule Libraries/pharmacology , Transcription, Genetic/drug effects , Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria/genetics , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Docking Simulation , RNA, Messenger/genetics , Small Molecule Libraries/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...