Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 26(9): 4812-4840, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32450009

ABSTRACT

Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate-driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW; Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom-mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004-2010 and 2011-2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid-Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.


Subject(s)
Acoustics , Animals , Atlantic Ocean , Caribbean Region , Greenland , Southeastern United States
2.
R Soc Open Sci ; 6(2): 181728, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30891284

ABSTRACT

Cuvier's beaked whales exhibit exceptionally long and deep foraging dives. The species is little studied due to their deep-water, offshore distribution and limited time spent at the surface. We used LIMPET satellite tags to study the diving behaviour of Cuvier's beaked whales off Cape Hatteras, North Carolina from 2014 to 2016. We deployed 11 tags, recording 3242 h of behaviour data, encompassing 5926 dives. Dive types were highly bimodal; deep dives (greater than 800 m, n = 1408) had a median depth of 1456 m and median duration of 58.9 min; shallow dives (50-800 m, n = 4518) were to median depths of 280 m with a median duration of 18.7 min. Most surface intervals were very short (median 2.2 min), but all animals occasionally performed extended surface intervals. We found no diel differences in dive depth or the percentage of time spent deep diving, but whales spent significantly more time near the surface at night. Other populations of this species exhibit similar dive patterns, but with regional differences in depth, duration and inter-dive intervals. Satellite-linked tags allow for the collection of long periods of dive records, including the occurrence of anomalous behaviours, bringing new insights into the lives of these deep divers.

3.
Sci Rep ; 7(1): 13460, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044130

ABSTRACT

Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.


Subject(s)
Acoustics , Whales , Animals , Atlantic Ocean , Geography , Population Dynamics , Spatial Analysis
4.
Adv Exp Med Biol ; 875: 791-9, 2016.
Article in English | MEDLINE | ID: mdl-26611034

ABSTRACT

Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar.


Subject(s)
Acoustics , Behavior, Animal/physiology , Cetacea/physiology , Military Personnel , Sound , Animals , Florida , Geography , Seasons , Species Specificity , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...