Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 5(6): 1541-1547, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32475110

ABSTRACT

Azo dyes are ubiquitous pollutants that contaminate water supplies and threaten human, biota, and ecosystem health. Their detection and discrimination are a considerable challenge owing to the numerous structural, chemical, and optical similarities between dyes, complexity of the wastewater in which they are found, and low environmental concentrations. Here, we demonstrate that the inner filter effect (IFE), in combination with conjugated polymer array-based sensing, offers a rapid approach for the quantitative profiling of these pollutants. The array was constructed using three anionic conjugated polyelectrolytes whose varying spectroscopic properties led to distinct IFE patterns in the presence of various dyes. These unique fluorescence response patterns were identified and processed using linear discriminant analysis (LDA), enabling the individual identification of 12 closely related azo dyes. To demonstrate the potential for utility in the environment, the array was used to differentiate between these dyes at nanomolar concentrations in water.


Subject(s)
Azo Compounds , Water , Coloring Agents , Ecosystem , Humans , Polymers
2.
Chem Sci ; 10(44): 10247-10255, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-32110311

ABSTRACT

Natural and anthropogenic activities result in the production of polycyclic aromatic hydrocarbons (PAHs), persistent pollutants that negatively impact the environment and human health. Rapid and reliable methods for the detection and discrimination of these compounds remains a technological challenge owing to their relatively featureless properties, structural similarities, and existence as complex mixtures. Here, we demonstrate that the inner filter effect (IFE), in combination with conjugated polymer (CP) array-based sensing, offers a straightforward approach for the quantitative and qualitative profiling of PAHs. The sensor array was constructed from six fluorescent fluorene-based copolymers, which incorporate side chains with peripheral 2-phenylbenzimidazole substituents that provide spectral overlap with PAHs and give rise to a pronounced IFE. Subtle structural differences in copolymer structure result in distinct spectral signatures, which provide a unique "chemical fingerprint" for each PAH. The discriminatory power of the array was evaluated using linear discriminant analysis (LDA) and principal component analysis (PCA) in order to discriminate between 16 PAH compounds identified as priority pollutants by the US Environmental Protection Agency (EPA). This array is the first multivariate system reliant on the modulation of the spectral signatures of CPs through the IFE for the detection and discrimination of closely related polynuclear aromatic species.

SELECTION OF CITATIONS
SEARCH DETAIL
...