Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hered ; 105(4): 566-571, 2014.
Article in English | MEDLINE | ID: mdl-24620002

ABSTRACT

Since the 1970s, water temperatures along the Atlantic seaboard of the United States have risen by an average of 0.5 °C in summer months and 2.2 °C in winter months. In response, the distribution and abundance of several nearshore species have changed dramatically, but no study has attempted to document whether estuarine populations have evolved greater thermal tolerance. Here, we re-examine the classic latitudinal cline at lactate dehydrogenase (LDH) in the killifish Fundulus heteroclitus that was originally described by Dennis Powers and associates from samples collected between 1970 and 1972. Laboratory and field evidences indicated that northern and southern isozymes at muscle LDH are locally adapted to cold and warm temperatures, respectively. Despite the potential for evolutionary response at this adaptive locus, we detected no significant shift of the LDH cline from 20 to 30 F. heteroclitus collected at each of 13 locations between the early 1970s and 2010. We conclude that the microevolution of LDH-mediated thermal tolerance has not occurred, that shifts in alleles are too incremental to be distinguished from random processes, or that F. heteroclitus uses phenotypic and genetic mechanisms besides LDH to respond to warmer waters.


Subject(s)
Acclimatization , Fundulidae/genetics , L-Lactate Dehydrogenase/genetics , Animals , Atlantic Ocean , Computer Simulation , Estuaries , Evolution, Molecular , Gene Frequency , Isoenzymes/genetics , Polymorphism, Single Nucleotide , Temperature , United States
2.
Am Nat ; 182(3): 347-58, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23933725

ABSTRACT

Bergmann's rule-an increase in body size with latitude-correlates with latitudinal declines in ambient temperature and predation risk, but relatively few studies simultaneously explore the relative importance of these factors. Along temperate Atlantic shorelines, the isopod Idotea balthica from high latitudes are 53% longer on average than isopods from low latitudes. When reared at 6°-24°C, juveniles increased growth and development rates with temperature. Because the increase in growth rate with temperature outstripped increases in development rate, female size at maturity increased with temperature. This thermal sensitivity of growth cannot account for the latitudinal pattern in body size. Within temperature treatments, females from low latitudes reached sexual maturity at younger ages and at a smaller size than did females from higher latitudes. This shift in life-history strategy is predicted by latitudinal declines in predation pressure, which we tested using field-tethering experiments. Overall, isopods at low latitudes had a 44% greater mortality risk from daytime predators relative to isopods at higher latitudes. We conclude that a latitudinal gradient in predation risk, not temperature, is principally responsible for Bergmann's rule in I. balthica. Increases in body size during future warming of oceans may be constrained by local patterns of predation risk.


Subject(s)
Biological Evolution , Food Chain , Isopoda/growth & development , Temperature , Animals , Female , Genetic Variation , Isopoda/genetics , Male
3.
Oecologia ; 170(2): 383-93, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22451011

ABSTRACT

Populations can respond to environmental heterogeneity by genetic adaptation to local conditions. Evidence for local adaptation in herbivores with relatively broad host breadth is scarce, either because generalists rarely locally adapt or because fewer studies have tested for local adaptation. The marine isopod Idotea balthica, a small (<3 cm) generalist herbivore common to estuaries of the northwestern Atlantic, is found on multiple macroalgae and sea grasses north of 42°N, while more southerly populations utilize sea grass-dominated and macroalgal-poor habitats. Feeding preference assays revealed a latitudinal shift in preference hierarchy that mirrors this geographic variation in host availability. Northern populations have higher feeding preference for fresh and freeze-dried tissue of the brown macroalga Fucus vesiculosus and consumed more of its water-soluble and lipophilic extracts relative to southern populations. In contrast, southern populations have a relatively higher preference for the green macroalga Ulva linza and sea grass Zostera marina. The rank of hosts in feeding assays exhibited by northern adults (Fucus = Ulva > Zostera) and southern adults (Ulva > Fucus > Zostera) closely mirrored ranking of juvenile growth rates, suggesting that preference and performance are strongly correlated across these macrophytes. Several of our assays included isopods that had parents reared under uniform laboratory conditions, indicating that geographic differences are genetically mediated and unlikely to reflect phenotypic plasticity or maternal effects. Local adaptation in host use traits may be common in broadly distributed, generalist herbivores in marine and terrestrial systems, and will manifest itself as local shifts in the preference ranking of hosts.


Subject(s)
Food Preferences , Herbivory , Isopoda , Adaptation, Physiological , Animals , Fucus , Phenotype , Plants, Edible , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...