Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 17(2): 238-256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336020

ABSTRACT

Host defense at the mucosal interface requires collaborative interactions between diverse cell lineages. Epithelial cells damaged by microbial invaders release reparative proteins such as the Trefoil factor family (TFF) peptides that functionally restore barrier integrity. However, whether TFF peptides and their receptors also serve instructive roles for immune cell function during infection is incompletely understood. Here, we demonstrate that the intestinal trefoil factor, TFF3, restrains (T cell helper) TH1 cell proliferation and promotes host-protective type 2 immunity against the gastrointestinal parasitic nematode Trichuris muris. Accordingly, T cell-specific deletion of the TFF3 receptor, leucine-rich repeat and immunoglobulin containing nogo receptor 2 (LINGO2), impairs TH2 cell commitment, allows proliferative expansion of interferon (IFN)g+ cluster of differentiation (CD)4+ TH1 cells and blocks normal worm expulsion through an IFNg-dependent mechanism. This study indicates that TFF3, in addition to its known tissue reparative functions, drives anti-helminth immunity by controlling the balance between TH1/TH2 subsets.


Subject(s)
Communicable Diseases , Gastrointestinal Diseases , Nematoda , Nematode Infections , Trichuriasis , Animals , Trefoil Factor-3 , Th1 Cells , T-Lymphocytes, Helper-Inducer
2.
J Agric Food Chem ; 70(27): 8300-8308, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35775364

ABSTRACT

Although domesticated potatoes contain a large variety of steroidal glycoalkaloids (SGAs) and saponins, in the past, many research projects mainly focused on the two major SGAs, α-solanine and α-chaconine. This study investigates the quantitative changes, induced by post-harvest LED light exposure, of six SGAs and four saponins in 12 potato cultivars at three different time points (1, 7, and 16 days), by using ultra-performance liquid chromatography tandem mass spectrometry. Altogether, SGA contents of 3.0-17.1 mg/100 g fresh weight (FW) could be observed in the analyzed tubers with potato varieties highly exceeding the newly discussed safety limit of 10 mg/100 g. The overall contents of 0.1-5.4 mg/100 g FW of the so far barely studied saponins, like protoneodioscin or barogenin-solatrioside, highly differed between the assayed potato cultivars. Furthermore, cultivar-specific regulations of SGAs and saponins could be observed due to light exposure.


Subject(s)
Saponins , Solanine , Solanum tuberosum , Plant Tubers/chemistry , Saponins/analysis , Solanum tuberosum/chemistry
4.
J Agric Food Chem ; 70(24): 7447-7459, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35679324

ABSTRACT

Plant pathogens such as Phytophthora infestans that caused the Irish Potato Famine continue to threaten local and global food security. Genetic and chemical plant protection measures are often overcome by adaptation of pathogen population structures. Therefore, there is a constant demand for new, consumer- and environment-friendly plant protection strategies. Metabolic alterations induced by P. infestans in the foliage and tubers of six different potato cultivars were investigated. Using a combination of untargeted metabolomics, isolation techniques, and structure elucidation by MS and 1D/2D-NMR experiments, five steroidal glycoalkaloids, five oxylipins, and four steroidal saponins were identified. As the steroidal saponins showed antioomycete but no hemolytic activity, they may thus be considered as probably safe target substances for enrichment in breeding programs for disease resistance and as chemical lead structures for the production of nature-derived synthetic antioomycetes.


Subject(s)
Phytophthora infestans , Saponins , Solanum tuberosum , Genotype , Plant Breeding , Plant Diseases/genetics , Plant Diseases/prevention & control , Saponins/pharmacology , Solanum tuberosum/genetics
5.
Nat Commun ; 10(1): 4408, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31562318

ABSTRACT

Intestinal epithelial cells (IEC) have important functions in nutrient absorption, barrier integrity, regeneration, pathogen-sensing, and mucus secretion. Goblet cells are a specialized cell type of IEC that secrete Trefoil factor 3 (TFF3) to regulate mucus viscosity and wound healing, but whether TFF3-responsiveness requires a receptor is unclear. Here, we show that leucine rich repeat receptor and nogo-interacting protein 2 (LINGO2) is essential for TFF3-mediated functions. LINGO2 immunoprecipitates with TFF3, co-localizes with TFF3 on the cell membrane of IEC, and allows TFF3 to block apoptosis. We further show that TFF3-LINGO2 interactions disrupt EGFR-LINGO2 complexes resulting in enhanced EGFR signaling. Excessive basal EGFR activation in Lingo2 deficient mice increases disease severity during colitis and augments immunity against helminth infection. Conversely, TFF3 deficiency reduces helminth immunity. Thus, TFF3-LINGO2 interactions de-repress inhibitory LINGO2-EGFR complexes, allowing TFF3 to drive wound healing and immunity.


Subject(s)
Colitis/immunology , ErbB Receptors/immunology , Helminthiasis/immunology , Intestinal Mucosa/immunology , Membrane Proteins/metabolism , Nerve Tissue Proteins/immunology , Trefoil Factor-3/immunology , Animals , Cell Line, Tumor , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate , ErbB Receptors/genetics , ErbB Receptors/metabolism , Goblet Cells/immunology , Goblet Cells/metabolism , Goblet Cells/parasitology , HEK293 Cells , Helminthiasis/metabolism , Helminthiasis/parasitology , Helminths/immunology , Helminths/physiology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Membrane Proteins/genetics , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organophosphonates , Trefoil Factor-3/genetics , Trefoil Factor-3/metabolism , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...