Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34518228

ABSTRACT

Molecular chaperones are key components of the cellular proteostasis network whose role includes the suppression of the formation and proliferation of pathogenic aggregates associated with neurodegenerative diseases. The molecular principles that allow chaperones to recognize misfolded and aggregated proteins remain, however, incompletely understood. To address this challenge, here we probe the thermodynamics and kinetics of the interactions between chaperones and protein aggregates under native solution conditions using a microfluidic platform. We focus on the binding between amyloid fibrils of α-synuclein, associated with Parkinson's disease, to the small heat-shock protein αB-crystallin, a chaperone widely involved in the cellular stress response. We find that αB-crystallin binds to α-synuclein fibrils with high nanomolar affinity and that the binding is driven by entropy rather than enthalpy. Measurements of the change in heat capacity indicate significant entropic gain originates from the disassembly of the oligomeric chaperones that function as an entropic buffer system. These results shed light on the functional roles of chaperone oligomerization and show that chaperones are stored as inactive complexes which are capable of releasing active subunits to target aberrant misfolded species.


Subject(s)
Amyloid/metabolism , Heat-Shock Proteins, Small/metabolism , alpha-Crystallin B Chain/metabolism , alpha-Synuclein/metabolism , Entropy , Humans , Parkinson Disease/metabolism , Protein Aggregates/physiology , Proteostasis/physiology
2.
Front Oncol ; 11: 689927, 2021.
Article in English | MEDLINE | ID: mdl-34222017

ABSTRACT

In the US, the growing demand for precision medicine, particularly in oncology, continues to put pressure on the availability of genetic counselors to meet that demand. This is especially true in certain geographic locations due to the uneven distribution of genetic counselors throughout the US. To assess these disparities, access to genetic counselors of all specialties is explored by geography, cancer type, and social determinants of health. Geospatial technology was used to combine and analyze genetic counselor locations and cancer incidence at the county level across the US, with a particular focus on tumors associated with BRCA mutations including ovarian, pancreatic, prostate and breast. Access distributions were quantified, and associations with region, cancer type, and socioeconomic variables were investigated using correlational tests. Nationally, in 2020, there were 4,813 genetic counselors, or 1.49 genetic counselors per 100,000 people, varying between 0.17 to 5.7 per 100,000 at the state level. Seventy-one percent of U.S. residents live within a 30-minute drive-time to a genetic counselor. Drive-times, however, are not equally distributed across the country - while 82% of people in metropolitan areas are 30 minutes from a genetic counselor, only 6% of people in nonmetro areas live within 30 minutes' drive time. There are statistically significant differences in access across geographical regions, socioeconomics and cancer types. Access to genetic counselors for cancer patients differs across groups, including regional, socioeconomic, and cancer type. These findings highlight areas of the country that may benefit from increased genetic counseling provider supply, by increasing the number of genetic counselors in a region or by expanding the use of telegenetics a term used to describe virtual genetic counseling consults that occur via videoconference. Policy intervention to allow genetic counselors to bill for their services may be an effective route for increasing availability of genetic counselors' services However, genetic counselors in direct patient care settings also face other challenges such as salary, job satisfaction, job recognition, overwork/burnout, and appropriate administrative/clinical support, and addressing these issues should also be considered along with policy support. These results could support targeted policy reform and alternative service models to increase access to identified pockets of unmet need, such as telemedicine. Data and analysis are available to the public through an interactive dashboard.

3.
J Phys Chem Lett ; 9(22): 6437-6443, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30371082

ABSTRACT

The long lag times and subsequent rapid growth of Alzheimer's Aß42 fibrils can be explained by a secondary nucleation step, in which existing fibril surfaces are able to nucleate the formation of new fibrils via an autocatalytic process. The molecular mechanism of secondary nucleation, however, is still unknown. Here we investigate the first step, namely, adsorption of the Aß42 peptide monomers onto the fibril surface. Using long all-atom molecular simulations and an enhanced sampling scheme, we are able to generate a diverse ensemble of binding events. The resulting thermodynamics of adsorption are consistent with experiment as well as with the requirements for effective autocatalysis determined from coarse-grained simulations. We identify the key interactions stabilizing the adsorbed state, which are predominantly polar in nature, and relate them to the effects of known disease-causing mutations.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Peptide Fragments/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Multimerization , Thermodynamics
4.
Biochemistry ; 57(26): 3641-3649, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29763298

ABSTRACT

Many molecular chaperones exist as oligomeric complexes in their functional states, yet the physical determinants underlying such self-assembly behavior, as well as the role of oligomerization in the activity of molecular chaperones in inhibiting protein aggregation, have proven to be difficult to define. Here, we demonstrate direct measurements under native conditions of the changes in the average oligomer populations of a chaperone system as a function of concentration and time and thus determine the thermodynamic and kinetic parameters governing the self-assembly process. We access this self-assembly behavior in real time under native-like conditions by monitoring the changes in the micrometer-scale diffusion of the different complexes in time and space using a microfluidic platform. Using this approach, we find that the oligomerization mechanism of the Hsp70 subdomain occurs in a cooperative manner and involves structural constraints that limit the size of the species formed beyond the limits imposed by mass balance. These results illustrate the ability of microfluidic methods to probe polydisperse protein self-assembly in real time in solution and to shed light on the nature and dynamics of oligomerization processes.


Subject(s)
HSP70 Heat-Shock Proteins/chemistry , Diffusion , Equipment Design , Humans , Kinetics , Lab-On-A-Chip Devices , Protein Domains , Protein Multimerization , Thermodynamics
5.
Nat Chem ; 10(6): 673-683, 2018 06.
Article in English | MEDLINE | ID: mdl-29736006

ABSTRACT

Alzheimer's disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-ß peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer's disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aß42 (the 42-residue form of the amyloid-ß peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aß42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aß42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aß42 aggregation, thereby helping rationalize the link between Alzheimer's disease and the impairment of cholesterol homeostasis.


Subject(s)
Amyloid beta-Peptides/metabolism , Cholesterol/metabolism , Lipid Bilayers/metabolism , Peptide Fragments/metabolism , Catalysis , Humans , Kinetics , Protein Binding
6.
Biophys J ; 114(4): 870-884, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29490247

ABSTRACT

Monomers of amyloid-ß (Aß) protein are known to be disordered, but there is considerable controversy over the existence of residual or transient conformations that can potentially promote oligomerization and fibril formation. We employed single-molecule Förster resonance energy transfer (FRET) spectroscopy with site-specific dye labeling using an unnatural amino acid and molecular dynamics simulations to investigate conformations and dynamics of Aß isoforms with 40 (Aß40) and 42 residues (Aß42). The FRET efficiency distributions of both proteins measured in phosphate-buffered saline at room temperature show a single peak with very similar FRET efficiencies, indicating there is apparently only one state. 2D FRET efficiency-donor lifetime analysis reveals, however, that there is a broad distribution of rapidly interconverting conformations. Using nanosecond fluorescence correlation spectroscopy, we measured the timescale of the fluctuations between these conformations to be ∼35 ns, similar to that of disordered proteins. These results suggest that both Aß40 and Aß42 populate an ensemble of rapidly reconfiguring unfolded states, with no long-lived conformational state distinguishable from that of the disordered ensemble. To gain molecular-level insights into these observations, we performed molecular dynamics simulations with a force field optimized to describe disordered proteins. We find, as in experiments, that both peptides populate configurations consistent with random polymer chains, with the vast majority of conformations lacking significant secondary structure, giving rise to very similar ensemble-averaged FRET efficiencies.


Subject(s)
Amyloid beta-Peptides/chemistry , Fluorescence Resonance Energy Transfer/methods , Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Single Molecule Imaging/methods , Amino Acid Sequence , Humans , Models, Molecular , Protein Conformation
7.
Sci Rep ; 7(1): 12295, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947758

ABSTRACT

Many biological and synthetic systems exploit self-assembly to generate highly intricate closed supramolecular architectures, ranging from self-assembling cages to viral capsids. The fundamental design principles that control the structural determinants of the resulting assemblies are increasingly well-understood, but much less is known about the kinetics of such assembly phenomena and it remains a key challenge to elucidate how these systems can be engineered to assemble in an efficient manner and avoid kinetic trapping. We show here that simple scaling laws emerge from a set of kinetic equations describing the self-assembly of identical building blocks into closed supramolecular structures and that this scaling behavior provides general rules that determine efficient assembly in these systems. Using this framework, we uncover the existence of a narrow range of parameter space that supports efficient self-assembly and reveal that nature capitalizes on this behavior to direct the reliable assembly of viral capsids on biologically relevant timescales.


Subject(s)
Models, Chemical , Nanostructures/chemistry , Kinetics , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...