Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
S Afr Med J ; 109(7): 471-476, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31266571

ABSTRACT

For more than 70 years the default therapy for anaemia and blood loss was mostly transfusion. Accumulating evidence demonstrates a significant dose-dependent relationship between transfusion and adverse outcomes. This and other transfusion-related challenges led the way to a new paradigm. Patient blood management (PBM) is the application of evidence-based practices to optimise patient outcomes by managing and preserving the patient's own blood. 'Real-world' studies have shown that PBM improves patient outcomes and saves money. The prevalence of anaemia in adult South Africans is 31% in females and 17% in males. Improving the management of anaemia will firstly improve public health, secondly relieve the pressure on the blood supply, and thirdly improve the productivity of the nation's workforce. While high-income countries are increasingly implementing PBM, many middle- and low-income countries are still trying to upscale their transfusion services. The implementation of PBM will improve South Africa's health status while saving costs.


Subject(s)
Blood Transfusion, Autologous/standards , Standard of Care , Anemia/therapy , Blood Loss, Surgical , Developed Countries , Developing Countries , Evidence-Based Medicine , Humans , Patient Safety , Program Development , South Africa
2.
Biomed Res Int ; 2015: 968302, 2015.
Article in English | MEDLINE | ID: mdl-25710038

ABSTRACT

Red blood cells undergo a series of biochemical fluctuations during 35-42-day storage period at 1°C to 6°C. The sodium/potassium pump is immobilised causing a decrease in intracellular potassium with an increase in cytoplasmic sodium levels, glucose levels decline, and acidosis occurs as a result of low pH levels. The frailty of stored erythrocytes triggers the formation of haemoglobin-containing microparticles and the release of cell-free haemoglobin which may add to transfusion difficulties. Lipid peroxidation, oxidative stress to band 3 structures, and other morphological and structural molecular changes also occur leading to spheroechinocytes and osmotic fragility. These changes that transpire in the red cells during the storage period are referred to as "storage lesions." It is well documented that gamma irradiation exacerbates storage lesions and the reports of increased potassium levels leading to adverse reactions observed in neonates and infants have been of particular concern. There are, however, remarkably few systematic studies comparing the in vitro storage lesions of irradiated and nonirradiated red cell concentrates and it has been suggested that the impact of storage lesions on leucocyte reduced red blood cell concentrate (RBCC) is incomplete. The review examines storage lesions in red blood cells and their adverse effects in reference to blood transfusion.


Subject(s)
Blood Preservation/methods , Erythrocytes/metabolism , Erythrocytes/radiation effects , Animals , Cells, Cultured , Dose-Response Relationship, Radiation , Erythrocyte Transfusion , Erythrocytes/cytology , Humans , Radiation Dosage , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...