Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Med (Berl) ; 102(2): 197-211, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38015242

ABSTRACT

The underlying mechanisms of asbestos-related autoimmunity are poorly understood. As the size, surface reactivity, and free radical activity of asbestos particles are considered crucial regarding the health effects, this study aims to compare the effects of exposure to pristine amosite (pAmo) or milled amosite (mAmo) particles on lung damage, autoimmunity, and macrophage phenotype. Four months after lung exposure to 0.1 mg of amosite, BAL levels of lactate dehydrogenase, protein, free DNA, CCL2, TGF-ß1, TIMP-1, and immunoglobulin A of pAmo-exposed C57Bl/6 mice were increased when compared to fluids from control- and mAmo-exposed mice. Effects in pAmo-exposed mice were associated with lung fibrosis and autoimmunity including anti-double-strand DNA autoantibody production. mAmo or pAmo at 20 µg/cm2 induced a pro-inflammatory phenotype characterized by a significant increase in TNFα and IL-6 secretion on human monocyte-derived macrophages (MDMs). mAmo and pAmo exposure induced a decrease in the efferocytosis capacities of MDMs, whereas macrophage abilities to phagocyte fluorescent beads were unchanged when compared to control MDMs. mAmo induced IL-6 secretion and reduced the percentage of MDMs expressing MHCII and CD86 markers involved in antigen and T-lymphocyte stimulation. By contrast, pAmo but not mAmo activated the NLRP3 inflammasome, as evaluated through quantification of caspase-1 activity and IL-1ß secretion. Our results demonstrated that long-term exposure to pAmo may induce significant lung damage and autoimmune effects, probably through an alteration of macrophage phenotype, supporting in vivo the higher toxicity of entire amosite (pAmo) with respect to grinded amosite. However, considering their impact on efferocytosis and co-stimulation markers, mAmo effects should not be neglected. KEY MESSAGES: Lung fibrosis and autoimmunity induced by amosite particles depend on their physicochemical characteristics (size and surface) Inhalation exposure of mice to pristine amosite fibers is associated with lung fibrosis and autoimmunity Anti-dsDNA antibody is a marker of autoimmunity in mice exposed to pristine amosite fibers Activation of lung mucosa-associated lymphoid tissue, characterized by IgA production, after exposure to pristine amosite fibers Pristine and milled amosite particle exposure reduced the efferocytosis capacity of human-derived macrophages.


Subject(s)
Asbestos, Amosite , Pulmonary Fibrosis , Humans , Mice , Animals , Asbestos, Amosite/pharmacology , Asbestos, Amosite/toxicity , Pulmonary Fibrosis/chemically induced , Autoimmunity , Interleukin-6/metabolism , Lung/metabolism , Macrophages , DNA/metabolism
2.
Front Immunol ; 14: 1205405, 2023.
Article in English | MEDLINE | ID: mdl-37885889

ABSTRACT

Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease in which circulating immune complexes can cause different types of glomerulonephritis, according to immune deposits and to the type of glomerular cell injury. Proliferative lesions represent the most severe form of lupus nephritis (LN) and often lead to kidney failure and death. Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that recognize microbial-derived ligands from the riboflavin synthesis pathway. Although abundant in peripheral blood, MAIT cells are enriched in mucosal and inflamed tissues. While previous studies have reported concordant results concerning lower MAIT cell frequencies in the blood of SLE patients, no information is known about MAIT cell function and LN severity and outcome. Methods: In the current study, we analyzed the baseline phenotype and function of peripheral blood MAIT cells by flow cytometry in 26 patients with LN and in a control group of 16 healthy individuals. Results: We observe that MAIT cell frequencies are markedly reduced in blood of LN patients. MAIT cells from patients have an altered phenotype in terms of migration, proliferation and differentiation markers, notably in most severe forms of LN. Frequencies of PMA/ionomycin stimulated MAIT cells secreting effector molecules, such as proinflammatory IL-17 and cytotoxic protein granzyme B, are higher in LN patients. Patients undergoing a complete renal remission after immunosuppressive therapy had higher MAIT cell frequency, lower expression of proliferation marker Ki-67 and granzyme B (GzB) at inclusion. Remarkably, GzB production defines a predictive model for complete remission. Discussion: We report here that blood MAIT cells display proinflammatory and cytotoxic function in severe lupus nephritis which may play a pathogenesis role, but without association with systemic lupus activity. Finally, low cytotoxic profile of MAIT cells may represent a promising prognostic factor of lupus nephritis remission one year after induction therapy.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mucosal-Associated Invariant T Cells , Humans , Granzymes , Phenotype , Patient Acuity
3.
Int Immunopharmacol ; 116: 109723, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36696855

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune fibrotic disorder notably characterized by the production of antinuclear autoantibodies, which have been linked to an excess of apoptotic cells, normally eliminated by a macrophagic efferocytosis. As interferon (IFN) signature and phosphorylation of JAK-STAT proteins are hallmarks of SSc tissues, we tested the hypothesis that a JAK inhibitor, ruxolitinib, targeting the IFN signaling, could improve efferocytosis of IFN-exposed human macrophages in vitro as well as skin and lung fibrosis. In vivo, BLM- and HOCl-induced skin thickness and fibrosis is associated with an increase of caspase-3 positive dermal cells and a significant increase of IFN-stimulated genes expression. In BLM-SSc model, ruxolitinib prevented dermal thickness, fibrosis and significantly decreased the number of cleaved caspase-3 cells in the dermis. Ruxolitinib also improved lung architecture and fibrosis although IFN signature was not entirely decreased by ruxolitinib. In vitro, ruxolitinib improves efferocytosis capacity of human monocyte-differentiated macrophages exposed to IFN-γ or IFN-ß. In human fibroblasts derived from lung (HLF) biopsies isolated from patients with idiopathic pulmonary fibrosis, the reduced mRNA expression of typical TGF-ß-activated markers by ruxolitinib was associated with a decrease of the phosphorylation of SMAD2 /3 and STAT3. Our finding supports the anti-fibrotic properties of ruxolitinib in a systemic SSc mouse model and in vitro in human lung fibroblasts.


Subject(s)
Scleroderma, Systemic , Animals , Mice , Humans , Caspase 3/metabolism , Fibrosis , Nitriles/pharmacology , Skin/pathology , Fibroblasts
4.
Toxicon ; 200: 87-91, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34274377

ABSTRACT

The amanitins (namely α- and ß-amanitin) contained in certain mushrooms are bicyclic octapeptides that, when ingested, are responsible for potentially lethal hepatotoxicity. M101 is an extracellular hemoglobin extracted from the marine worm Arenicola marina. It has intrinsic Cu/Zn-SOD-like activity and is currently used as an oxygen carrier in organ preservation solutions. Our present results suggest that M101 might be effective in reducing amanitin-induced hepatotoxicity and may have potential for therapeutic development.


Subject(s)
Chemical and Drug Induced Liver Injury , Oxygen , Amanitins , Chemical and Drug Induced Liver Injury/drug therapy , Hemoglobins , Humans
5.
J Immunol ; 204(9): 2492-2502, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32213567

ABSTRACT

The chemokine CXCL13 controls the normal organization of secondary lymphoid tissues and the neogenesis of ectopic lymphoid structures in nonlymphoid organs, particularly the lungs. The progression and severity of idiopathic pulmonary fibrosis (IPF), a fatal and irreversible interstitial lung disease, is predicted by the circulating blood concentrations of CXCL13. Although CXCL13 is produced by pulmonary tissues, it has not been determined which cells are involved. This study examines CXCL13 production by lung tissue macrophages from patients with IPF and the signaling pathways controlling CXCL13 gene expression in human alveolar macrophages (AM) and monocyte-derived macrophages (MoDM). CXCL13 is found in CD68- and CD206-positive AM from patients with IPF, and the CXCL13 gene is induced in these macrophages and MoDM when they are stimulated with LPS. We found that TNF-α and IL-10 control optimal CXCL13 gene expression in MoDM and possibly in AM by activating the NF-κB and JAK/STAT pathways, respectively. We also found that blood TNF-α and CXCL13 concentrations are significantly correlated in patients with IPF, suggesting that TNF-α contributes to CXCL13 production in humans. In conclusion, the results of this study demonstrate that AM from patients with IPF produces CXCL13 and that the NF-κB and JAK/STAT pathways are required to induce the expression of this major chemokine.


Subject(s)
Chemokine CXCL13/metabolism , Interleukin-10/metabolism , Lung/metabolism , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism , Aged , Female , Gene Expression/physiology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Janus Kinases/metabolism , Lung Diseases, Interstitial/metabolism , Macrophages, Alveolar/metabolism , Male , NF-kappa B/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/physiology
6.
Int Immunopharmacol ; 72: 112-123, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30974282

ABSTRACT

The tyrosine kinase inhibitor, Nintedanib (NTD), has been approved for the treatment of idiopathic pulmonary fibrosis (IPF). In cell-free systems, NTD was recently shown to inhibit kinase activity of the human recombinant colony-stimulating factor 1 (CSF1) receptor (CSF1R) which mediates major functions of pulmonary macrophages. In the present study, we have investigated the effects of NTD on the phenotype of human monocyte-derived macrophages controlled by CSF1 in order to identify its anti-inflammatory properties via CSF1R inhibition. NTD (0.01 to 1 µM) prevented the CSF1-induced phosphorylation of CSF1R and activation of the downstream signaling pathways. NTD, like the CSF1R inhibitor GW2580, significantly decreased the adhesion of macrophages and production of the chemokine ligand (CCL) 2. NTD also altered the polarization of macrophages to classical M1 and alternative M2a macrophages. It reduced the secretion of several pro-inflammatory and/or pro-fibrotic cytokines (IL-1ß, IL-8, IL-10 and CXCL13) by M1 macrophages but did not prevent the expression of M1 markers. While NTD (50-200 nM) partially blocked the synthesis of M2a markers (CD11b, CD200R, CD206, and CD209), it did not reduce synthesis of the M2a pro-fibrotic cytokines CCL22 and PDGF-BB, and increased CCL18 release when used at its highest concentration (1 µM). The effects of NTD on macrophage polarization only was partially mimicked by GW2580, suggesting that the drug inhibits other molecules in addition to CSF1R. In conclusion, NTD alters the CSF1-controlled phenotype of human macrophages mainly by blocking the activation of CSF1R that thus constitutes a new molecular target of NTD, at least in vitro.


Subject(s)
Indoles/pharmacology , Macrophages/drug effects , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Cells, Cultured , Cytokines/metabolism , Humans , Idiopathic Pulmonary Fibrosis , Macrophages/metabolism , Phenotype
7.
Toxicol In Vitro ; 52: 154-160, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29928969

ABSTRACT

Chronic exposure to diesel engine exhausts is associated with an increased risk of pulmonary diseases including lung cancer. Diesel engine exhausts contain large amounts of diesel exhaust particles (DEP) on which are adsorbed several carcinogenic compounds such as polycyclic aromatic hydrocarbons. Acute toxicity of high concentrations of DEP has been largely demonstrated in various in vitro cellular models. In contrast, the cellular and molecular impacts of low environmental concentrations of DEP on the phenotype of chronically exposed lung epithelial cells remain to be investigated. In the present study, we show that long term exposure (6 months) to 2 µg/ml (0.4 µg/cm2) DEP (standard reference material 1650b) increased cytochrome P4501A mRNA levels in the human bronchial epithelial BEAS-2B cell line. However, chronic exposure to DEP did not change cell morphology, trigger epithelial-mesenchymal transition or increase anchorage-independent cell growth. Moreover, DEP increase neither the levels of reactive oxygen species or those of γ-histone H2AX, nor the expression of interleukin-6 and interleukin-8. Our results thus demonstrate that the chronic exposure to low DEP concentrations could increase cytochrome P501A gene expression in BEAS-2B cells but did not induce molecular effects related to genotoxicity, oxidative stress or inflammation.


Subject(s)
Epithelial Cells/drug effects , Vehicle Emissions/toxicity , Bronchi/cytology , Cell Line , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1B1/genetics , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , Histones/metabolism , Humans , Phenotype , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...