Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 487: 164-72, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24784741

ABSTRACT

As part of a UK government funded research project to update the UK N2O inventory methodology, a systematic review of published nitrous oxide (N2O) emission factors was carried out of non-UK research, for future comparison and synthesis with the UK measurement based evidence base. The aim of the study is to assess how the UK IPCC default emission factor for N2O emissions derived from synthetic or organic fertiliser inputs (EF1) compares to international values reported in published literature. The availability of data for comparing and/or refining the UK IPCC default value and the possibility of analysing sufficient auxiliary data to propose a Tier 2 EF1 reporting strategy is evaluated. The review demonstrated a lack of consistency in reporting error bounds for fertiliser-derived EFs and N2O flux data with 8% and 44% of publications reporting EF and N2O flux error bounds respectively. There was also poor description of environmental (climate and soil) and experimental design auxiliary data. This is likely to be due to differences in study objectives, however potential improvements to soil parameter reporting are proposed. The review demonstrates that emission factors for agricultural-derived N2O emissions ranged -0.34% to 37% showing high variation compared to the UK Tier 1 IPCC EF1 default values of 1.25% (IPCC 1996) and 1% (IPPC 2006). However, the majority (83%) of EFs reported for UK-relevant soils fell within the UK IPCC EF1 uncertainty range of 0.03% to 3%. Residual maximum likelihood (REML) analysis of the data collated in the review showed that the type and rate of fertiliser N applied and soil type were significant factors influencing EFs reported. Country of emission, the length of the measurement period, the number of splits, the crop type, pH and SOC did not have a significant impact on N2O emissions. A subset of publications where sufficient data was reported for meta-analysis to be conducted was identified. Meta-analysis of effect sizes of 41 treatments demonstrated that the application of fertiliser has a significant effect on N2O emissions in comparison to control plots and that emission factors were significantly different to zero. However no significant relationships between the quantity of fertiliser applied and the effect size of the amount of N2O emitted from fertilised plots compared to control plots were found. Annual addition of fertiliser of 35 to 557 kg N/ha gave a mean increase in emissions of 2.02 ± 0.28 g N2O/ha/day compared to control treatments (p<0.01). Emission factors were significantly different from zero, with a mean emission factor estimated directly from the meta analysis of 0.17 ± 0.02%. This is lower than the IPCC 2006 Tier 1 EF1 value of 1% but falling within the uncertainty bound for the IPCC 2006 Tier 1 EF1 (0.03% to 3%). As only a small number of papers were viable for meta analysis to be conducted due to lack of reporting of the key controlling factors, the estimates of EF in this paper cannot include the true variability under conditions similar to the UK. Review-derived EFs of 0.34% to 37% and mean EF from meta-analysis of 0.17 ± 0.02% highlight variability in reporting EFs depending on the method applied and sample size. A protocol of systematic reporting of N2O emissions and key auxiliary parameters in publications across disciplines is proposed. If adopted this would strengthen the community to inform IPCC Tier 2 reporting development and reduce the uncertainty surrounding reported UK N2O emissions.


Subject(s)
Agriculture/statistics & numerical data , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Nitrogen Dioxide/analysis , Climate , Fertilizers , Greenhouse Effect , Seasons , United Kingdom
2.
Sci Total Environ ; 473-474: 692-701, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24412915

ABSTRACT

Methods for the spatial estimation of risk of harm to soil by erosion by water and wind and by soil organic matter decline are explored. Rates of harm are estimated for combinations of soil type and land cover (as a proxy for hazard frequency) and used to estimate risk of soil erosion and loss of soil organic carbon (SOC) for 1 km(2)pixels. Scenarios are proposed for defining the acceptability of risk of harm to soil: the most precautionary one corresponds to no net harm after natural regeneration of soil (i.e. a 1 in 20 chance of exceeding an erosion rate of <1 tha(-1)y(-1) and SOC content decline of 0 kg t(-1)y(-1) for mineral soils and a carbon stock decline of 0 tha(-1)y(-1) for organic soils). Areas at higher and lower than possible acceptable risk are mapped. The veracity of boundaries is compromised if areas of unacceptable risk are mapped to administrative boundaries. Errors in monitoring change in risk of harm to soil and inadequate information on risk reduction measures' efficacy, at landscape scales, make it impossible to use or monitor quantitative targets for risk reduction adequately. The consequences for priority area definition of expressing varying acceptable risk of harm to soil as a varying probability of exceeding a fixed level of harm, or, a varying level of harm being exceeded with a fixed probability, are discussed. Soil data and predictive models for rates of harm to soil would need considerable development and validation to implement a priority area approach robustly.


Subject(s)
Carbon/analysis , Conservation of Natural Resources/methods , Environmental Monitoring , Soil/chemistry , Risk Assessment
3.
Sci Total Environ ; 391(1): 1-12, 2008 Feb 25.
Article in English | MEDLINE | ID: mdl-18063012

ABSTRACT

Official frameworks for soil monitoring exist in most member states of the European Union. However, the uniformity of methodologies and the scope of actual monitoring are variable between national systems. This review identifies the differences between existing systems, and describes options for harmonising soil monitoring in the Member States and some neighbouring countries of the European Union. The present geographical coverage is uneven between and within countries. In general, national and regional networks are much denser in northern and eastern regions than in southern Europe. The median coverage in the 50 km x 50 km EMEP cells applied all over the European Union, is 300 km(2) for one monitoring site. Achieving such minimum density for the European Union would require 4100 new sites, mainly located in southern countries (Italy, Spain, Greece), parts of Poland, Germany, the Baltic countries, Norway, Finland and France. Options are discussed for harmonisation of site density, considering various risk area and soil quality indicator requirements.


Subject(s)
Environmental Monitoring , Soil Pollutants/analysis , Databases, Factual , Environmental Monitoring/methods , Environmental Monitoring/standards , Europe , European Union , International Cooperation
SELECTION OF CITATIONS
SEARCH DETAIL
...