Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
EBioMedicine ; 103: 105145, 2024 May.
Article in English | MEDLINE | ID: mdl-38713924

ABSTRACT

BACKGROUND: There is increased evidence that the effects of stem cells can mostly be duplicated by administration of their secretome which might streamline the translation towards the clinics. METHODS: The 12-patient SECRET-HF phase 1 trial has thus been designed to determine the feasibility and safety of repeated intravenous injections of the extracellular vesicle (EV)-enriched secretome of cardiovascular progenitor cells differentiated from pluripotent stem cells in severely symptomatic patients with drug-refractory left ventricular (LV) dysfunction secondary to non-ischemic dilated cardiomyopathy. Here we report the case of the first treated patient (baseline NYHA class III; LV Ejection Fraction:25%) in whom a dose of 20 × 109 particles/kg was intravenously infused three times three weeks apart. FINDINGS: In addition to demonstrating the feasibility of producing a cardiac cell secretome compliant with Good Manufacturing Practice standards, this case documents the excellent tolerance of its repeated delivery, without any adverse events during or after infusions. Six months after the procedure, the patient is in NYHA Class II with improved echo parameters, a reduced daily need for diuretics (from 240 mg to 160 mg), no firing from the previously implanted automatic internal defibrillator and no alloimmunization against the drug product, thereby supporting its lack of immunogenicity. INTERPRETATION: The rationale underlying the intravenous route is that the infused EV-enriched secretome may act by rewiring endogenous immune cells, both circulating and in peripheral organs, to take on a reparative phenotype. These EV-modified immune cells could then traffic to the heart to effect tissue repair, including mitigation of inflammation which is a hallmark of cardiac failure. FUNDING: This trial is funded by the French Ministry of Health (Programme Hospitalier de Recherche CliniqueAOM19330) and the "France 2030" National Strategy Program (ANR-20-F2II-0003). It is sponsored by Assistance Publique-Hôpitaux de Paris.


Subject(s)
Heart Failure , Secretome , Humans , Heart Failure/therapy , Heart Failure/metabolism , Heart Failure/etiology , Secretome/metabolism , Male , Extracellular Vesicles/metabolism , Middle Aged , Treatment Outcome
2.
Soins ; 69(882): 34-36, 2024.
Article in French | MEDLINE | ID: mdl-38296418

ABSTRACT

Constraints in the care of vulnerable elderly people are part of the daily life of services. This practice must not avoid multidisciplinary reflection by preserving the autonomy of patients' decisions despite cognitive disorders. The search for consent and reasons for refusing care must be the leitmotif and coercion the exception and must be supported.


Subject(s)
Cognitive Dysfunction , Health Services for the Aged , Personal Autonomy , Aged , Humans
3.
Front Cardiovasc Med ; 10: 1206279, 2023.
Article in English | MEDLINE | ID: mdl-37485274

ABSTRACT

Background: Current treatments of chemotherapy-induced cardiomyopathy (CCM) are of limited efficacy. We assessed whether repeated intravenous injections of human extracellular vesicles from cardiac progenitor cells (EV-CPC) could represent a new therapeutic option and whether EV manufacturing according to a Good Manufacturing Practices (GMP)-compatible process did not impair their bioactivity. Methods: Immuno-competent mice received intra-peritoneal injections (IP) of doxorubicin (DOX) (4 mg/kg each; cumulative dose: 12 mg/kg) and were then intravenously (IV) injected three times with EV-CPC (total dose: 30 billion). Cardiac function was assessed 9-11 weeks later by cardiac magnetic resonance imaging (CMR) using strain as the primary end point. Then, immuno-competent rats received 5 IP injections of DOX (3 mg/kg each; cumulative dose 15 mg/kg) followed by 3 equal IV injections of GMP-EV (total dose: 100 billion). Cardiac function was assessed by two dimensional-echocardiography. Results: In the chronic mouse model of CCM, DOX + placebo-injected hearts incurred a significant decline in basal (global, epi- and endocardial) circumferential strain compared with sham DOX-untreated mice (p = 0.043, p = 0.042, p = 0.048 respectively) while EV-CPC preserved these indices. Global longitudinal strain followed a similar pattern. In the rat model, IV injections of GMP-EV also preserved left ventricular end-systolic and end-diastolic volumes compared with untreated controls. Conclusions: Intravenously-injected extracellular vesicles derived from CPC have cardio-protective effects which may make them an attractive user-friendly option for the treatment of CCM.

4.
Biomaterials ; 291: 121877, 2022 12.
Article in English | MEDLINE | ID: mdl-36347132

ABSTRACT

Extracellular vesicles (EV) are increasingly recognized as a therapeutic option in heart failure. They are usually administered by direct intramyocardial injections with the caveat of a rapid wash-out from the myocardium which might weaken their therapeutic efficacy. To improve their delivery in the failing myocardium, we designed a system consisting of loading EV into a clinical-grade hyaluronic acid (HA) biomaterial. EV were isolated from umbilical cord-derived mesenchymal stromal cells. The suitability of HA as a delivery platform was then assessed in vitro. Rheology studies demonstrated the viscoelastic and shear thinning behaviors of the selected HA allowing its easy injection. Moreover, the release of HA-embedded EV was sustained over more than 10 days, and EV bioactivity was not altered by the biomaterial. In a rat model of myocardial ischemia reperfusion, we showed that HA-embedded EV preserved cardiac function (echocardiography), improved angiogenesis and decreased both apoptosis and fibrosis (histology and transcriptomics) when compared to intramyocardial administration of EV alone. These data thus strengthen the concept that inclusion of EV into a clinically useable biomaterial might optimize their beneficial effects on post-ischemic cardiac repair.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Myocardial Infarction , Animals , Rats , Biocompatible Materials , Myocardial Infarction/pathology , Myocardium/pathology , Mesenchymal Stem Cells/pathology , Hyaluronic Acid
5.
Nurs Ethics ; 29(4): 833-843, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35240895

ABSTRACT

BACKGROUND: The first COVID-19 wave started in February 2020 in France. The influx of patients requiring emergency care and high-level technicity led healthcare professionals to fear saturation of available care. In that context, the multidisciplinary Ethics-Support Cell (EST) was created to help medical teams consider the decisions that could potentially be sources of ethical dilemmas. OBJECTIVES: The primary objective was to prospectively collect information on requests for EST assistance from 23 March to 9 May 2020. The secondary aim was to describe the Cell's functions during that period. RESEARCH DESIGN: This observational, real-time study of requests for Cell consultations concerned ethical dilemmas arising during a public health crisis. The EST created a grid to collect relevant information (clinical, patient's/designated representative's preferences and ethical principles strained by the situation), thereby assuring that each EST asked the same questions, in the same order. PARTICIPANTS AND RESEARCH CONTEXT: Only our university hospital's clinicians could request EST intervention. ETHICAL CONSIDERATIONS: The hospital Research Ethics Committee approved this study (no. CER-2020-107). The patient, his/her family, or designated representative was informed of this ethics consultation and most met with EST members, which enabled them to express their preferences and/or opposition. FINDINGS/RESULTS: 33 requests (patients' mean age: 80.8 years; 29 had COVID-19: 24 with dyspnea, 30 with comorbidities). 17 Emergency Department solicitations concerned ICU admission, without reference to resource constraints; others addressed therapeutic proportionality dilemmas. DISCUSSION: Intervention-request motives concerned limited resources and treatment intensity. Management revolved around three axes: the treatment option most appropriate for the patient, the feasibility of implementation, and dignified care for the patient. CONCLUSIONS: COVID-19 crisis forced hospitals to envisage prioritization of ICU access. Established decision-making criteria and protocols do not enable healthcare professionals to escape ethical dilemmas. That acknowledgement highlights ethical risks, enhances the added-value of nursing and encourages all players to be vigilant to pursue collective deliberations to achieve clear and transparent decisions.


Subject(s)
COVID-19 , Ethics Consultation , Aged, 80 and over , Ethics Committees, Clinical , Female , Health Personnel , Humans , Male , Morals
6.
Magn Reson Imaging ; 87: 88-96, 2022 04.
Article in English | MEDLINE | ID: mdl-35026346

ABSTRACT

Critical limb ischemia (CLI) is a severe disease which affects about 2 million people in the US. Its prevalence is assessed at 800/100,000 population. However, no reliable tools are currently available to assess perfusion defects at the muscle tissue level. DCE-MRI is a technique that holds the potential to be effective in achieving this goal. However, preclinical studies performed with DCE-MRI have indicated low sensitivity assessing perfusion at resting state. To improve these previous results, in this work we propose new methodologies for data acquisition and analysis and we also revisit the biological model used for evaluation. Eleven rabbits underwent embolization of a lower limb. They were imaged at day 7 after embolization using DCE-MRI, performed on a 4.7 T small imaging device. Among them, n = 4 rabbits were used for MRI sequence optimization and n = 6 for data analysis after one exclusion. Normalized Areas under the curve (AUCn), and kinetic parameters such as Ktrans and Vd resulting from the Tofts-Kety modeling (KTM) were calculated on the embolized and contralateral limbs. Average and heterogeneity features, consisting on standard-deviation and quantiles, were calculated on muscle groups and whole limbs. The Wilcoxon and Fisher-tests were performed to compare embolized and contralateral regions of interests. The Wilcoxon test was also used to compare features of parametric maps. Quantiles of 5 and 95% in the contralateral side were used to define low and high outliers. A P-value <0.05 was considered statistically significant. Average features were inefficient to identify injured muscles, in agreement with the low sensitivity of the technique previously reported by the literature. However, these findings were dramatically improved by the use of additional heterogeneity features (97% of total accuracy for group muscles, P < 0.01 and 100% of total accuracy for the total limbs). The mapping analysis and automatic outlier detection quantification improvement was explained by the presence of local hyperemia that impair the average calculations. The analysis with KTM did not provide any additional information compared to AUCn. The DCE technique can be effective in detecting embolization-induced disorders of limb muscles in a CLI model when heterogeneity is taken into account in the data processing, even without vascular stimulation. The simultaneous presence of areas of ischemia and hyperemia appeared as a signature of the injured limbs. These areas seem to reflect the simultaneous presence of infarcted areas and viable peripheral areas, characterized by a vascular response that is visible in DCE.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Animals , Contrast Media/pharmacology , Humans , Ischemia/diagnostic imaging , Magnetic Resonance Imaging/methods , Muscle, Skeletal/blood supply , Muscle, Skeletal/diagnostic imaging , Perfusion , Rabbits
7.
Theranostics ; 11(20): 10114-10124, 2021.
Article in English | MEDLINE | ID: mdl-34815807

ABSTRACT

Background: Extracellular vesicles (EV) mediate the therapeutic effects of stem cells but it is unclear whether this involves cardiac regeneration mediated by endogenous cardiomyocyte proliferation. Methods: Bi-transgenic MerCreMer/ZEG (n = 15/group) and Mosaic Analysis With Double Markers (MADM; n = 6/group) mouse models underwent permanent coronary artery ligation and received, 3 weeks later, 10 billion EV (from human iPS-derived cardiovascular progenitor cells [CPC]), or saline, injected percutaneously under echo guidance in the peri-infarcted myocardium. Endogenous cardiomyocyte proliferation was tracked by EdU labeling and biphoton microscopy. Other end points, including cardiac function (echocardiography and MRI), histology and transcriptomics were blindly assessed 4-6 weeks after injections. Results: There was no proliferation of cardiomyocytes in either transgenic mouse strains. Nevertheless, EV improved cardiac function in both models. In MerCreMer/ZEG mice, LVEF increased by 18.3 ± 0.2% between baseline and the end-study time point in EV-treated hearts which contrasted with a decrease by 2.3 ± 0.2% in the PBS group; MADM mice featured a similar pattern as intra-myocardial administration of EV improved LVEF by 13.3 ± 0.16% from baseline whereas it decreased by 14.4 ± 0.16% in the control PBS-injected group. This functional improvement was confirmed by MRI and associated with a reduction in infarct size, the decreased expression of several pro-fibrotic genes and an overexpression of the anti-fibrotic miRNA 133-a1 compared to controls. Experiments with an anti-miR133-a demonstrated that the cardio-reparative effects of EV were partly abrogated. Conclusions: EV-CPC do not trigger cardiomyocyte proliferation but still improve cardiac function by other mechanisms which may include the regulation of fibrosis.


Subject(s)
Extracellular Vesicles/metabolism , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Animals , Cell Proliferation/drug effects , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Disease Models, Animal , Extracellular Vesicles/transplantation , Fibrosis/physiopathology , Guided Tissue Regeneration/methods , Heart Failure/metabolism , Heart Function Tests/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Mice , Mice, Transgenic , MicroRNAs/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , Myocytes, Cardiac/drug effects
8.
Cardiovasc Res ; 117(1): 292-307, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32049348

ABSTRACT

AIMS: The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. METHODS AND RESULTS: Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. CONCLUSIONS: EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


Subject(s)
Cell Proliferation , Extracellular Vesicles/transplantation , Heart Failure/surgery , Induced Pluripotent Stem Cells/transplantation , Myocardial Infarction/surgery , Myocardium/immunology , Myocytes, Cardiac/transplantation , Regeneration , Animals , Cell Line , Coculture Techniques , Cytokines/metabolism , Disease Models, Animal , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Heart Failure/immunology , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Monocytes/immunology , Monocytes/metabolism , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Phenotype , Rats
9.
Acta Biomater ; 115: 92-103, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32814141

ABSTRACT

Cell therapy to restore cardiac function in chronic heart failure has been extensively studied. However, its therapeutic value is limited due to poor cell engraftment and survival and the therapeutic outcomes have been attributed to paracrine secretions such as extracellular vesicles (EV). The direct use of EV is an attractive therapeutic strategy and it has been shown that the kinetics of delivery of the EV to the targeted tissue may impact the outcomes. However, there are currently no technologies to deliver EV to the heart in a controlled and tunable manner. The objective of this study was to design a controlled release system, based on a photocurable adhesive polymer, to locally deliver EV to the cardiac tissue. We have first demonstrated that the adhesive polymer, PGSA-g-EG, did not impact the EV bioactivity in vitro and was biocompatible in vivo when tested in a rat model. Importantly, the polymer remained attached to the heart surface for at least 1 month. We have then evaluated and optimized the in vitro release kinetics of the EV from the PGSA-g-EG polymer. Freeze-dried EV formulations were developed to tune the release kinetics and maximize the loading in the polymeric material. Moreover, despite the instability of the EV in aqueous medium at 37°C, the PGSA-g-EG polymer was able to release bioactive EV for at least 14 days. Overall, these results suggest that the PGSA-g-EG is a suitable material to promote the controlled delivery of bioactive EV over an extended period of time. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EV) are an investigational class of therapeutics that has shown promise to restore cardiac function following an ischemic event. Furthermore, its translation to the clinics is expected to pose less regulatory challenges than cell-based therapies. However, EV therapeutic outcomes are likely to be impacted by the route of administration and the kinetics of delivery to the target tissue. Therefore, there is a need for biomaterial-based technologies to deliver, in a controlled and tunable manner, EV to the heart. The present study describes the use of PGSA-g-EG polymer as an adhesive cardiac patch with potential to enable the controlled delivery of bioactive EV over an extended period of time to the cardiac tissue.


Subject(s)
Extracellular Vesicles , Polymers , Acrylates , Animals , Decanoates , Delayed-Action Preparations/pharmacology , Glycerol/analogs & derivatives , Rats
10.
Eur Heart J ; 39(20): 1835-1847, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29420830

ABSTRACT

Aims: We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act. Methods and results: The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy. In vitro bioactivity assays were used to evaluate their cellular effects. Cell and EV microRNA (miRNA) content were assessed by miRNA array. Myocardial infarction was induced in 199 nude mice. Three weeks later, mice with left ventricular ejection fraction (LVEF) ≤ 45% received transcutaneous echo-guided injections of iPSC-CM (1.4 × 106, n = 19), iPSC-Pg (1.4 × 106, n = 17), total EV secreted by 1.4 × 106 iPSC-Pg (n = 19), or phosphate-buffered saline (control, n = 17) into the peri-infarct myocardium. Seven weeks later, hearts were evaluated by echocardiography, histology, and gene expression profiling, blinded to treatment group. In vitro, EV were internalized by target cells, increased cell survival, cell proliferation, and endothelial cell migration in a dose-dependent manner and stimulated tube formation. Extracellular vesicles were rich in miRNAs and most of the 16 highly abundant, evolutionarily conserved miRNAs are associated with tissue-repair pathways. In vivo, EV outperformed cell injections, significantly improving cardiac function through decreased left ventricular volumes (left ventricular end systolic volume: -11%, P < 0.001; left ventricular end diastolic volume: -4%, P = 0.002), and increased LVEF (+14%, P < 0.0001) relative to baseline values. Gene profiling revealed that EV-treated hearts were enriched for tissue reparative pathways. Conclusion: Extracellular vesicles secreted by iPSC-Pg are effective in the treatment of CHF, possibly, in part, through their specific miRNA signature and the associated stimulation of distinct cardioprotective pathways. The processing and regulatory advantages of EV could make them effective substitutes for cell transplantation.


Subject(s)
Extracellular Vesicles/transplantation , Heart Failure/therapy , Animals , Cell Proliferation , Cell Survival , Embryonic Stem Cells/ultrastructure , Extracellular Vesicles/genetics , Heart Failure/pathology , Humans , Mice, Nude , MicroRNAs/analysis , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Myocytes, Cardiac/ultrastructure , Pluripotent Stem Cells/ultrastructure , Treatment Outcome
11.
J Am Coll Cardiol ; 71(4): 429-438, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29389360

ABSTRACT

BACKGROUND: In addition to scalability, human embryonic stem cells (hESCs) have the unique advantage of allowing their directed differentiation toward lineage-specific cells. OBJECTIVES: This study tested the feasibility of leveraging the properties of hESCs to generate clinical-grade cardiovascular progenitor cells and assessed their safety in patients with severe ischemic left ventricular dysfunction. METHODS: Six patients (median age 66.5 years [interquartile range (IQR): 60.5 to 74.7 years]; median left ventricular ejection fraction 26% [IQR: 22% to 32%]) received a median dose of 8.2 million (IQR: 5 to 10 million) hESC-derived cardiovascular progenitors embedded in a fibrin patch that was epicardially delivered during a coronary artery bypass procedure. The primary endpoint was safety at 1 year and focused on: 1) cardiac or off-target tumor, assessed by imaging (computed tomography and fluorine-18 fluorodeoxyglucose positron emission tomography scans); 2) arrhythmias, detected by serial interrogations of the cardioverter-defibrillators implanted in all patients; and 3) alloimmunization, assessed by the presence of donor-specific antibodies. Patients were followed up for a median of 18 months. RESULTS: The protocol generated a highly purified (median 97.5% [IQR: 95.5% to 98.7%]) population of cardiovascular progenitors. One patient died early post-operatively from treatment-unrelated comorbidities. All others had uneventful recoveries. No tumor was detected during follow-up, and none of the patients presented with arrhythmias. Three patients developed clinically silent alloimmunization. All patients were symptomatically improved with an increased systolic motion of the cell-treated segments. One patient died of heart failure after 22 months. CONCLUSIONS: This trial demonstrates the technical feasibility of producing clinical-grade hESC-derived cardiovascular progenitors and supports their short- and medium-term safety, thereby setting the grounds for adequately powered efficacy studies. (Transplantation of Human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure [ESCORT]; NCT02057900).


Subject(s)
Coronary Artery Bypass , Human Embryonic Stem Cells/transplantation , Myocardial Ischemia/therapy , Stem Cell Transplantation/methods , Ventricular Dysfunction, Left/therapy , Aged , Cohort Studies , Feasibility Studies , Female , Humans , Male , Middle Aged , Myocardial Ischemia/complications , Myocardial Ischemia/mortality , Survival Rate , Treatment Outcome , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/mortality
12.
J Vasc Surg ; 68(3): 849-857, 2018 09.
Article in English | MEDLINE | ID: mdl-29074110

ABSTRACT

OBJECTIVE: Various animal models of critical limb ischemia have been developed in the past. However, there is no animal model that can undergo endovascular treatment, while providing reproducible true critical limb ischemia with arterial ulcers and rest pain. We evaluated the efficacy of a new model of rabbit hindlimb ischemia created through a percutaneous approach using embolization with calibrated particles. METHODS: Through a percutaneous transauricular artery approach and selective catheterization of the superficial femoral artery, embolization of distal limb vessels was performed using a mixture of 300- to 500-µm calibrated microparticles (Embosphere, Merit Medical, Salt Lake City, Utah), saline solution, and iodine contrast. Clinical and ultrasound imaging-based blood flow evaluation was performed before embolization and during follow-up. Histologic evaluation was performed at humane killing 14 days after the procedure. RESULTS: The model was successfully created in 10 rabbits (10 limbs). One rabbit died of sudden death at 8 days after the procedure. The nine surviving rabbits developed hind ulcers. All rabbits had a higher pain score in the follow-up compared to baseline value (P < .0001). Blood flow in the saphenous artery decreased significantly after the procedure and later at 14 days follow-up (baseline value 63.4 ± 31.3 µL per cardiac cycle vs 32.0 ± 28.4 µL per cardiac cycle postprocedure [P = .0013] and 32.0 ± 28.4 µL per cardiac cycle at 14 days [P = .0015]). Pathology showed signs of severe limb ischemia in all rabbits with subacute and chronic injury patterns. CONCLUSIONS: A rabbit hind limb ischemia model created by percutaneous transauricular distal femoral artery embolization with calibrated particles may overcome some of the limitations of existing animal models. As such, this model could prove useful for assessing therapies designed to improve arterial perfusion and collateral growth.


Subject(s)
Hindlimb/blood supply , Ischemia/physiopathology , Animals , Disease Models, Animal , Endovascular Procedures , Femoral Artery/diagnostic imaging , Femoral Artery/physiopathology , Femoral Artery/surgery , Hindlimb/diagnostic imaging , Ischemia/diagnostic imaging , Ischemia/surgery , Pain Measurement , Rabbits , Reproducibility of Results , Ultrasonography
13.
J Heart Lung Transplant ; 35(6): 795-807, 2016 06.
Article in English | MEDLINE | ID: mdl-27041495

ABSTRACT

BACKGROUND: Cell-based therapies are being explored as a therapeutic option for patients with chronic heart failure following myocardial infarction. Extracellular vesicles (EV), including exosomes and microparticles, secreted by transplanted cells may orchestrate their paracrine therapeutic effects. We assessed whether post-infarction administration of EV released by human embryonic stem cell-derived cardiovascular progenitors (hESC-Pg) can provide equivalent benefits to administered hESC-Pg and whether hESC-Pg and EV treatments activate similar endogenous pathways. METHODS: Mice underwent surgical occlusion of their left coronary arteries. After 2-3 weeks, 95 mice included in the study were treated with hESC-Pg, EV, or Minimal Essential Medium Alpha Medium (alpha-MEM; vehicle control) delivered by percutaneous injections under echocardiographic guidance into the peri-infarct myocardium. functional and histologic end-points were blindly assessed 6 weeks later, and hearts were processed for gene profiling. Genes differentially expressed between control hearts and hESC-Pg-treated and EV-treated hearts were clustered into functionally relevant pathways. RESULTS: At 6 weeks after hESC-Pg administration, treated mice had significantly reduced left ventricular end-systolic (-4.20 ± 0.96 µl or -7.5%, p = 0.0007) and end-diastolic (-4.48 ± 1.47 µl or -4.4%, p = 0.009) volumes compared with baseline values despite the absence of any transplanted hESC-Pg or human embryonic stem cell-derived cardiomyocytes in the treated mouse hearts. Equal benefits were seen with the injection of hESC-Pg-derived EV, whereas animals injected with alpha-MEM (vehicle control) did not improve significantly. Histologic examination suggested a slight reduction in infarct size in hESC-Pg-treated animals and EV-treated animals compared with alpha-MEM-treated control animals. In the hESC-Pg-treated and EV-treated groups, heart gene profiling identified 927 genes that were similarly upregulated compared with the control group. Among the 49 enriched pathways associated with these up-regulated genes that could be related to cardiac function or regeneration, 78% were predicted to improve cardiac function through increased cell survival and/or proliferation or DNA repair as well as pathways related to decreased fibrosis and heart failure. CONCLUSIONS: In this post-infarct heart failure model, either hESC-Pg or their secreted EV enhance recovery of cardiac function and similarly affect cardiac gene expression patterns that could be related to this recovery. Although the mechanisms by which EV improve cardiac function remain to be determined, these results support the idea that a paracrine mechanism is sufficient to effect functional recovery in cell-based therapies for post-infarction-related chronic heart failure.


Subject(s)
Heart Failure , Animals , Chronic Disease , Embryonic Stem Cells , Extracellular Vesicles , Humans , Mice , Myocardial Infarction , Myocardium , Myocytes, Cardiac
14.
Biomed Res Int ; 2015: 893051, 2015.
Article in English | MEDLINE | ID: mdl-26504843

ABSTRACT

OBJECTIVE: To develop a rabbit model of closed-chest catheter-induced myocardial infarction. Background. Limitations of rodent and large animal models justify the search for clinically relevant alternatives. METHODS: Microcatheterization of the heart was performed in 47 anesthetized 3-4 kg New Zealand rabbits to test five techniques of myocardial ischemia: free coils (n = 4), interlocking coils (n = 4), thrombogenic gelatin sponge (n = 4), balloon occlusion (n = 4), and alcohol injection (n = 8). In order to limit ventricular fibrillation, an antiarrhythmic protocol was implemented, with beta-blockers/amiodarone before and xylocaine infusion during the procedure. Clinical, angiographic, and echographic data were gathered. End points included demonstration of vessel occlusion (TIMI flow grades 0 and 1 on the angiogram), impairment of left ventricular function at 2 weeks after procedure (by echocardiography), and pathologically confirmed myocardial infarction. RESULTS: The best arterial access was determined to be through the right carotid artery. The internal mammary guiding catheter 4-Fr was selected as the optimal device for selective intracoronary injection. Free coils deployed prematurely and tended to prolapse into the aorta. Interlocking coils did not deploy completely and failed to provide reliable results. Gelatin sponge was difficult to handle, adhered to the catheter, and could not be clearly visualized by fluoroscopy. Balloon occlusion yielded inconsistent results. Alcohol injection was the most efficient and reproducible method for inducing myocardial infarction (4 out of 6 animals), the extent of which could be fine-tuned by using a coaxial balloon catheter as a microcatheter (0.52 mm) to achieve a superselective injection of 0.2 mL of alcohol. This approach resulted in a 20% decrease in LVEF and infarcted myocardium was confirmed histologically. CONCLUSIONS: By following a stepwise approach, a minimally invasive, effective, and reproducible rabbit model of catheter-induced myocardial infarction has been developed which addresses the limitations of rodent experiments while avoiding the logistical and cost issues associated with large animal models.


Subject(s)
Disease Models, Animal , Myocardial Infarction , Animals , Cardiac Catheterization , Echocardiography , Male , Myocardium/pathology , Rabbits
15.
Eur Heart J ; 36(30): 2011-7, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-25990469

ABSTRACT

AIMS: Comparative studies suggest that stem cells committed to a cardiac lineage are more effective for improving heart function than those featuring an extra-cardiac phenotype. We have therefore developed a population of human embryonic stem cell (ESC)-derived cardiac progenitor cells. METHODS AND RESULTS: Undifferentiated human ESCs (I6 line) were amplified and cardiac-committed by exposure to bone morphogenetic protein-2 and a fibroblast growth factor receptor inhibitor. Cells responding to these cardio-instructive cues express the cardiac transcription factor Isl-1 and the stage-specific embryonic antigen SSEA-1 which was then used to purify them by immunomagnetic sorting. The Isl-1(+) SSEA-1(+) cells were then embedded into a fibrin scaffold which was surgically delivered onto the infarct area in a 68-year-old patient suffering from severe heart failure [New York Heart Association [NYHA] functional Class III; left ventricular ejection fraction (LVEF): 26%]. A coronary artery bypass was performed concomitantly in a non-infarcted area. The implanted cells featured a high degree of purity (99% were SSEA-1(+)), had lost the expression of Sox-2 and Nanog, taken as markers for pluripotency, and strongly expressed Isl-1. The intraoperative delivery of the patch was expeditious. The post-operative course was uncomplicated either. After 3 months, the patient is symptomatically improved (NYHA functional Class I; LVEF: 36%) and a new-onset contractility is echocardiographically evident in the previously akinetic cell/patch-treated, non-revascularized area. There have been no complications such as arrhythmias, tumour formation, or immunosuppression-related adverse events. CONCLUSION: This observation demonstrates the feasibility of generating a clinical-grade population of human ESC-derived cardiac progenitors and combining it within a tissue-engineered construct. While any conclusion pertaining to efficacy would be meaningless, the patient's functional outcome yet provides an encouraging hint. Beyond this case, the platform that has been set could be useful for generating different ESC-derived lineage-specific progenies.


Subject(s)
Heart Failure/therapy , Human Embryonic Stem Cells/transplantation , Female , Humans , Middle Aged , Myocardial Ischemia/therapy , Tissue Scaffolds , Treatment Outcome , Ventricular Dysfunction, Left/therapy
16.
Tissue Eng Part A ; 21(9-10): 1552-64, 2015 May.
Article in English | MEDLINE | ID: mdl-25611092

ABSTRACT

As part of a program targeted at developing a resorbable valved tube for replacement of the right ventricular outflow tract, we compared three biopolymers (polyurethane [PU], polyhydroxyalkanoate (the poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) [PHBVV]), and polydioxanone [PDO]) and two biofunctionalization techniques (using adipose-derived stem cells [ADSCs] or the arginine-glycine-aspartate [RGD] peptide) in a rat model of partial inferior vena cava (IVC) replacement. Fifty-three Wistar rats first underwent partial replacement of the IVC with an acellular electrospun PDO, PU, or PHBVV patch, and 31 nude rats subsequently underwent the same procedure using a PDO patch biofunctionalized either by ADSC or RGD. Results were assessed both in vitro (proliferation and survival of ADSC seeded onto the different materials) and in vivo by magnetic resonance imaging (MRI), histology, immunohistochemistry [against markers of vascular cells (von Willebrand factor [vWF], smooth muscle actin [SMA]), and macrophages ([ED1 and ED2] immunostaining)], and enzyme-linked immunosorbent assay (ELISA; for the expression of various cytokines and inducible NO synthase). PDO showed the best in vitro properties. Six weeks after implantation, MRI did not detect significant luminal changes in any group. All biopolymers were evenly lined by vWF-positive cells, but only PDO and PHBVV showed a continuous layer of SMA-positive cells at 3 months. PU patches resulted in a marked granulomatous inflammatory reaction. The ADSC and RGD biofunctionalization yielded similar outcomes. These data confirm the good biocompatibility of PDO and support the concept that appropriately peptide-functionalized polymers may be successfully substituted for cell-loaded materials.


Subject(s)
Oligopeptides/pharmacology , Polymers/pharmacology , Stem Cells/cytology , Tissue Engineering/methods , Vena Cava, Inferior/physiology , Animals , Biopolymers/pharmacology , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Female , Flow Cytometry , Implants, Experimental , Magnetic Resonance Imaging , Microscopy, Electron, Scanning , Rats, Wistar , Stem Cells/drug effects
17.
J Heart Lung Transplant ; 34(9): 1198-207, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25534019

ABSTRACT

BACKGROUND: Cardiac-committed cells and biomimetic scaffolds independently improve the therapeutic efficacy of stem cells. In this study we tested the long-term effects of their combination. METHODS: Eighty immune-deficient rats underwent permanent coronary artery ligation. Five to 7 weeks later, those with an echocardiographically measured ejection fraction (EF) ≤55% were re-operated on and randomly allocated to receive a cell-free fibrin patch (n = 25), a fibrin patch loaded with 700,000 human embryonic stem cells (ESC) pre-treated to promote early cardiac differentiation (SSEA-1(+) progenitors [n = 30]), or to serve as sham-operated animals (n = 25). Left ventricular function was assessed by echocardiography at baseline and every month thereafter until 4 months. Hearts were then processed for assessment of fibrosis and angiogenesis and a 5-component heart failure score was constructed by integrating the absolute change in left ventricular end-systolic volume (LVESV) between 4 months and baseline, and the quantitative polymerase chain reaction (qPCR)-based expression of natriuretic peptides A and B, myosin heavy chain 7 and periostin. All data were recorded and analyzed in a blinded manner. RESULTS: The cell-treated group consistently yielded better functional outcomes than the sham-operated group (p = 0.002 for EF; p = 0.01 for LVESV). Angiogenesis in the border zone was also significantly greater in the cell-fibrin group (p = 0.006), which yielded the lowest heart failure score (p = 0.04 vs sham). Engrafted progenitors were only detected shortly after transplantation; no grafted cells were identified after 4 months. There was no teratoma identified. CONCLUSIONS: A fibrin scaffold loaded with ESC-derived cardiac progenitors resulted in sustained improvement in contractility and attenuation of remodeling without sustained donor cell engraftment. A paracrine effect, possibly on innate reparative responses, is a possible mechanism for this enduring effect.


Subject(s)
Embryonic Stem Cells , Fibrin , Myocardium/cytology , Stem Cells , Tissue Scaffolds , Angiogenesis Inducing Agents , Animals , Cell Adhesion Molecules/analysis , Coronary Vessels , Echocardiography , Female , Heart Failure , Humans , Immunohistochemistry , Ligation , Mice, Nude , Myosin Heavy Chains , Natriuretic Peptides/analysis , Polymerase Chain Reaction , Rats , Stroke Volume , Ventricular Function, Left
18.
Eur Heart J ; 36(12): 743-50, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-24835485

ABSTRACT

AIM: There is now compelling evidence that cells committed to a cardiac lineage are most effective for improving the function of infarcted hearts. This has been confirmed by our pre-clinical studies entailing transplantation of human embryonic stem cell (hESC)-derived cardiac progenitors in rat and non-human primate models of myocardial infarction. These data have paved the way for a translational programme aimed at a phase I clinical trial. METHODS AND RESULTS: The main steps of this programme have included (i) the expansion of a clone of pluripotent hESC to generate a master cell bank under good manufacturing practice conditions (GMP); (ii) a growth factor-induced cardiac specification; (iii) the purification of committed cells by immunomagnetic sorting to yield a stage-specific embryonic antigen (SSEA)-1-positive cell population strongly expressing the early cardiac transcription factor Isl-1; (iv) the incorporation of these cells into a fibrin scaffold; (v) a safety assessment focused on the loss of teratoma-forming cells by in vitro (transcriptomics) and in vivo (cell injections in immunodeficient mice) measurements; (vi) an extensive cytogenetic and viral testing; and (vii) the characterization of the final cell product and its release criteria. The data collected throughout this process have led to approval by the French regulatory authorities for a first-in-man clinical trial of transplantation of these SSEA-1(+) progenitors in patients with severely impaired cardiac function. CONCLUSION: Although several facets of this manufacturing process still need to be improved, these data may yet provide a useful platform for the production of hESC-derived cardiac progenitor cells under safe and cost-effective GMP conditions.


Subject(s)
Human Embryonic Stem Cells/transplantation , Immunomagnetic Separation/methods , Tissue Banks/organization & administration , Animals , Cell- and Tissue-Based Therapy/methods , Clinical Trials, Phase I as Topic , Cytogenetic Analysis , Evaluation Studies as Topic , Humans , Mice, SCID , Myocytes, Cardiac/cytology , Myocytes, Cardiac/transplantation , Tissue Preservation/methods , Tissue Scaffolds
19.
Cell Transplant ; 23(1): 87-96, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23127387

ABSTRACT

Both enzymatic dissociation of cells prior to needle-based injections and poor vascularization of myocardial infarct areas are two important contributors to cell death and impede the efficacy of cardiac cell therapy. Because these limitations could be overcome by scaffolds ensuring cell cohesiveness and codelivery of angiogenic cells, we used a chronic rat model of myocardial infarction to assess the long-term (6 months) effects of the epicardial delivery of a composite collagen-based patch harboring both cardiomyogenesis-targeted human embryonic SSEA-1(+) (stem cell-derived stage-specific embryonic antigen-1 positive) cardiovascular progenitors and autologous (rat) adipose tissue-derived angiogenesis-targeted stromal cells (n = 27). Cell-free patches served as controls (n = 28). Serial follow-up echocardiographic measurements of left ventricular ejection fraction (LVEF) showed that the composite patch group yielded a significantly better preservation of left ventricular function that was sustained over time as compared with controls, and this pattern persisted when the assessment was restricted to the subgroup of rats with initial LVEFs below 50%. The composite patch group was also associated with significantly less fibrosis and more vessels in the infarct area. However, although human progenitors expressing cardiac markers were present in the patches before implantation, none of them could be subsequently identified in the grafted tissue. These data confirm the efficacy of epicardial scaffolds as cell carriers for ensuring long-term functional benefits and suggest that these effects are likely related to paracrine effects and call for optimizing cross-talks between codelivered cell populations to achieve the ultimate goal of myocardial regeneration.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Myocardial Infarction/therapy , Pericardium/cytology , Adipose Tissue/cytology , Animals , Collagen/administration & dosage , Defibrillators, Implantable , Disease Models, Animal , Female , Humans , Myocardium/cytology , Rats , Rats, Wistar , Tissue Scaffolds
20.
Cardiovasc Res ; 99(4): 640-7, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23771945

ABSTRACT

AIMS: Few studies have assessed the effects of cell therapy in non-ischaemic cardiomyopathies which, however, contribute to a large number of cardiac failures. Assuming that such conditions are best suited for a global delivery of cells, we assessed the effects of epicardially delivered adipose tissue-derived stroma cell (ADSC) sheets in a mouse model of dilated cardiomyopathy based on cardiac-specific and tamoxifen-inducible invalidation of serum response factor. METHODS AND RESULTS: Three weeks after tamoxifen administration, the function of the left ventricle (LV) was assessed by echocardiography. Twenty-nine mice were then allocated to control (n = 9, non-transgenic), sham (n = 10, transgenic non-treated), and treated (n = 10, transgenic) groups. In the treated group, 3 × 10(6) allogeneic ADSCs were cultured for 2 days onto temperature-responsive polymers and the generated sheets were then transplanted over the surface of the heart. In 10 additional mice, the sheet was made of green fluorescent protein (GFP)-labelled ADSCs to track cell fate. Function, engraftment, and fibrosis were blindly assessed after 3 weeks. In the non-treated group, fractional shortening declined compared with baseline, whereas the sheet application resulted in its stabilization. This correlated with a lesser degree of LV remodelling, as LV end-diastolic and end-systolic diameters did not differ from baseline values. Many GFP(+) cells were identified in the epicardial graft and in the myocardium. Treated animals also displayed a reduced expression of the stress-induced atrial natriuretic factor and beta-myosin heavy chain genes. These protective effects were also accompanied by a reduction of myocardial fibrosis. CONCLUSION: These results strongly suggest the functional relevance of epicardially delivered cell-seeded biomaterials to non-ischaemic heart failure.


Subject(s)
Adipose Tissue/cytology , Cardiomyopathy, Dilated/therapy , Stromal Cells/transplantation , Animals , Cardiomyopathy, Dilated/pathology , Fibrosis , Ki-67 Antigen/analysis , Mice , Mice, Inbred C57BL , Myocardium/pathology , Pericardium , Stromal Cells/cytology , Stromal Cells/physiology , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...