Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 9(9)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37755050

ABSTRACT

Thirty-one alpine species of Cortinarius (Agaricales, Cortinariaceae) were described from the alpine zone of the Alps during the second half of the XX century, by the Swiss mycologist Jules Favre, and by the French mycologists Denise Lamoure and Marcel Bon. Notoriously difficult to identify by macro- and microscopical characters, most of these species, which belong to subgen. Telamonia, have been thoroughly revised in global publications based on type sequencing. Recent surveys in the alpine areas of France (Savoie) and Italy (Lombardy), as well as the sequencing of D. Lamoure's collections, identified three new species that are here described and illustrated: C. dryadophilus in sect. Castanei, C. infidus in sect. Verni, and C. saniosopygmaeus in sect. Saniosi. The holotypes of C. caesionigrellus Lamoure and C. paleifer var. brachyspermus Lamoure could be sequenced. A recent collection of the former is described and illustrated here for the first time, and based on available data, the latter name is recombined as Cortinarius flexipes var. brachyspermus comb. nov. Lastly, C. argenteolilacinus var. dovrensis is reported from the alpine zone for the first time and a new combination, Thaxterogaster dovrensis comb. & stat. nov. is introduced in the present work.

3.
Molecules ; 28(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36838545

ABSTRACT

The UHPLC-HRMS analysis of Cortinarius ominosus basidiomata extract revealed that this mushroom accumulated elevated yields of an unreported specialized metabolite. The molecular formula of this unknown compound, C17H10O8, indicated that a challenging structure elucidation lay ahead, owing to its critically low H/C atom ratio. The structure of this new isolate, namely ominoxanthone (1), could not be solved from the interpretation of the usual set of 1D/2D NMR data that conveyed too limited information to afford a single, unambiguous structure. To remedy this, a Computer-Assisted Structure Elucidation (CASE) workflow was used to rank the different possible structure candidates consistent with our scarce spectroscopic data. DFT-based chemical shift calculations on a limited set of top-ranked structures further ascertained the determined structure for ominoxanthone. Although the determined scaffold of ominoxanthone is unprecedented as a natural product, a plausible biosynthetic scenario involving a precursor known from cortinariaceous sources and classical biogenetic reactions could be proposed.


Subject(s)
Biological Products , Xanthones , Molecular Structure , Magnetic Resonance Spectroscopy , Xanthones/chemistry , Biological Products/chemistry
4.
Biology (Basel) ; 11(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35625498

ABSTRACT

In Europe, amatoxin-containing mushrooms are responsible for most of the deadly poisonings caused by macrofungi. The present work presents a multidisciplinary revision of the European species of Amanita sect. Phalloideae based on morphology, phylogeny, epidemiology, and biochemistry of amatoxins and phallotoxins. Five distinct species of this section have been identified in Europe to date: A. phalloides, A. virosa, A. verna, the recently introduced North American species A. amerivirosa, and A. vidua sp. nov., which is a new name proposed for the KOH-negative Mediterranean species previously described as A. verna or A. decipiens by various authors. Epitypes or neotypes are selected for species lacking suitable reference collections, namely A. verna and A. virosa. Three additional taxa, Amanita decipiens, A. porrinensis, and A. virosa var. levipes are here considered later heterotypic synonyms of A. verna, A. phalloides, and A. amerivirosa, respectively.

5.
Fungal Divers ; 117(1): 1-272, 2022.
Article in English | MEDLINE | ID: mdl-36852303

ABSTRACT

This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly.

6.
Mycologia ; 113(3): 559-573, 2021.
Article in English | MEDLINE | ID: mdl-33734016

ABSTRACT

Over 80 species are recognized in the commercially important genus Morchella, many of them endemic to specific regions or continents. Among them, M. anatolica and M. rufobrunnea are the earliest diverging lineages and are key in decoding the evolutionary history, global biogeography, and ecological trends within this iconic genus. Early ancestral area reconstruction (AAR) tests postulated a western North American origin of morels but had not included in the analyses M. anatolica, whose phylogenetic identity remained at the time unresolved. Following new collections of M. anatolica and M. rufobrunnea from the Mediterranean islands of Cyprus, Kefalonia, Lesvos, Malta, and Zakynthos, we performed revised AAR tests to update the historical biogeography of the genus. Our results, inferred from multilocus analysis of an expanded data set of 79 phylospecies, challenge previous reconstructions and designate the Mediterranean basin as the most likely place of origin for morels. Detailed morphoanatomical analyses demonstrate that ascocarp rufescence, the nondarkening apothecial ridges, the absence of a sinus, and the stipe pruinescence are all stable synapomorphic features of sect. Rufobrunnea, which could be interpreted as ancestral for the genus. The saprotrophic mode of nutrition, suggested by the prolific in vitro growth of M. anatolica, might also be an ancestral trait. Emended descriptions, including extensive imagery and scanning electron microscopy, are provided, and a new evolutionary hypothesis of the genus is proposed.


Subject(s)
Ascomycota , Biological Evolution , Phylogeny , Phylogeography
7.
Data Brief ; 25: 104115, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31453275

ABSTRACT

The data presented here was obtained during a decade-long macromycete inventory on the island of Cyprus and is supplementary to the research article "Present status and future of boletoid fungi (Boletaceae) on the island of Cyprus: cryptic and threatened diversity unravelled by ten-year study" [1]. A new, rainfall-based sampling protocol for documenting fungal diversity in Mediterranean ecosystems, is described in detail.

8.
IMA Fungus ; 9(1): 167-175, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30018877

ABSTRACT

Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.

9.
IMA Fungus ; 9: 271-290, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30622883

ABSTRACT

In this study, eight species of Chroogomphus are recognized from Europe: C. britannicus, C. aff. filiformis 1, C. fulmineus, C. cf. helveticus, C. mediterraneus, C. cf. purpurascens, C. rutilus, and C. subfulmineus. Different candidates for the application of the name C. rutilus are evaluated and the best fit to the description is selected; lecto- and epitypes are chosen to fix the name. Chroogomphus fulmineus and C. mediterraneus are also epitypified and a new species, C. subfulmineus, is described. The infrageneric classification is revised and a new subgenus Siccigomphus and three new sections, Confusi, Filiformes, and Fulminei are introduced. The former sections Chroogomphus and Floccigomphus are elevated to subgeneric level. Comparison of the ITS regions (nuc rDNA ITS1-5.8S-ITS2) of all species studied shows that there is a minimum interspecific difference of 1.5 %, with the exception of the two species belonging to sect. Fulminei which differ by a minimum of 0.9 %. Ecological specimen data indicate that species of Chroogomphus form basidiomes under members of Pinaceae, with a general preference for species of Pinus. Five European species have been recorded under Picea, while Abies and Larix have also been recorded as tree associates, although the detailed nutritional relationships of the genus, involving other suilloid fungi in particular, have yet to be fully clarified.

10.
Front Plant Sci ; 6: 881, 2015.
Article in English | MEDLINE | ID: mdl-26539201

ABSTRACT

The ectomycorrhizal (ECM) symbiosis connects mutualistic plants and fungal species into bipartite networks. While links between one focal ECM plant and its fungal symbionts have been widely documented, systemic views of ECM networks are lacking, in particular, concerning the ability of fungal species to mediate indirect ecological interactions between ECM plant species (projected-ECM networks). We assembled a large dataset of plant-fungi associations at the species level and at the scale of Corsica using molecular data and unambiguously host-assigned records to: (i) examine the correlation between the number of fungal symbionts of a plant species and the average specialization of these fungal species, (ii) explore the structure of the plant-plant projected network and (iii) compare plant association patterns in regard to their position along the ecological succession. Our analysis reveals no trade-off between specialization of plants and specialization of their partners and a saturation of the plant projected network. Moreover, there is a significantly lower-than-expected sharing of partners between early- and late-successional plant species, with fewer fungal partners for early-successional ones and similar average specialization of symbionts of early- and late-successional plants. Our work paves the way for ecological readings of Mediterranean landscapes that include the astonishing diversity of below-ground interactions.

11.
Mol Biol Cell ; 26(11): 2112-27, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25851601

ABSTRACT

By regulating actin cytoskeleton dynamics, Rho GTPases and their activators RhoGEFs are implicated in various aspects of neuronal differentiation, including dendritogenesis and synaptogenesis. Purkinje cells (PCs) of the cerebellum, by developing spectacular dendrites covered with spines, represent an attractive model system in which to decipher the molecular signaling underlying these processes. To identify novel regulators of dendritic spine morphogenesis among members of the poorly characterized DOCK family of RhoGEFs, we performed gene expression profiling of fluorescence-activated cell sorting (FACS)-purified murine PCs at various stages of their postnatal differentiation. We found a strong increase in the expression of the Cdc42-specific GEF DOCK10. Depleting DOCK10 in organotypic cerebellar cultures resulted in dramatic dendritic spine defects in PCs. Accordingly, in mouse hippocampal neurons, depletion of DOCK10 or expression of a DOCK10 GEF-dead mutant led to a strong decrease in spine density and size. Conversely, overexpression of DOCK10 led to increased spine formation. We show that DOCK10 function in spinogenesis is mediated mainly by Cdc42 and its downstream effectors N-WASP and PAK3, although DOCK10 is also able to activate Rac1. Our global approach thus identifies an unprecedented function for DOCK10 as a novel regulator of dendritic spine morphogenesis via a Cdc42-mediated pathway.


Subject(s)
Cerebellum/growth & development , Dendritic Spines/physiology , Guanine Nucleotide Exchange Factors/physiology , Neurogenesis , Neurons/physiology , Purkinje Cells/physiology , Animals , Dendritic Spines/ultrastructure , Female , Flow Cytometry , Gene Expression Profiling , Guanine Nucleotide Exchange Factors/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neuropeptides/metabolism , Purkinje Cells/metabolism , Purkinje Cells/ultrastructure , Signal Transduction , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , cdc42 GTP-Binding Protein/metabolism , p21-Activated Kinases/metabolism , rac1 GTP-Binding Protein/metabolism
12.
Mycologia ; 107(2): 359-82, 2015.
Article in English | MEDLINE | ID: mdl-25550303

ABSTRACT

Applying early names, with or without original material, to genealogical species is challenging. For morels this task is especially difficult because of high morphological stasis and high plasticity of apothecium color and shape. Here we propose a nomenclatural revision of true morels (Morchella, Pezizales) from Europe and North America, based on molecular phylogenetic analyses of portions of the genes for RNA polymerase II largest subunit (RPB1) and second largest subunit (RPB2), translation elongation factor-1α (TEF1), the nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS), and partial nuc 28S rDNA D1-D2 domains (28S). The 107 newly sequenced collections were from both continents, including 48 types, together with previously published sequences. Names are applied to 30 of the 65 currently recognized genealogical species. Results of the present study revealed that the number of Morchella species in Europe (n = 21) is nearly identical to that in North America (n = 22). Only seven species were found on both continents, consistent with previous reports of high continental endemism within the genus. Presently it is not possible to tell whether the transoceanic disjunctions were due to human activities, migration across a Bering land bridge or long-distance dispersal. In an effort to stabilize the taxonomy, due in part to the recent publication of synonyms for 11 of the species, accepted names are presented together with their corresponding later synonyms. A new subclade that includes holotypes of M. castanea and M. brunneorosea is identified in sect. Morchella (Esculenta Clade). Lectotypes for Morchella deliciosa, M. eximia and M. tridentina are designated here, as well as epitypes for M. dunalii, M. eximia, M. purpurascens and M. vulgaris. Morchella conica was determined to be illegitimate, and further research is required to determine the identity of M. elata and M. inamoena.


Subject(s)
Ascomycota/genetics , Ascomycota/isolation & purification , Evolution, Molecular , Ascomycota/classification , Europe , Human Activities , Humans , Molecular Sequence Data , North America , Phylogeny
13.
J Cell Sci ; 125(Pt 22): 5417-27, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22956537

ABSTRACT

Doublecortin-domain containing (DCDC) genes play key roles in the normal and pathological development of the human brain cortex. The origin of the cellular specialisation and the functional redundancy of these microtubule (MT)-associated proteins (MAPs), especially those of Doublecortin (DCX) and Doublecortin-like kinase (DCLKs) genes, is still unclear. The DCX domain has the ability to control MT architecture and bundling. However, the physiological significance of such properties is not fully understood. To address these issues, we sought post-mitotic roles for zyg-8, the sole representative of the DCX-DCLK subfamily of genes in C. elegans. Previously, zyg-8 has been shown to control anaphase-spindle positioning in one-cell stage embryos, but functions of the gene later in development have not been investigated. Here we show that wild-type zyg-8 is required beyond early embryonic divisions for proper development, spontaneous locomotion and touch sensitivity of adult worms. Consistently, we find zyg-8 expression in the six touch receptor neurons (TRNs), as well as in a subset of other neuronal and non-neuronal cells. In TRNs and motoneurons, zyg-8 controls cell body shape/polarity and process outgrowth and morphology. Ultrastructural analysis of mutant animals reveals that zyg-8 promotes structural integrity, length and number of individual MTs, as well as their bundled organisation in TRNs, with no impact on MT architecture.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/cytology , Genes, Helminth/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Organizing Center/metabolism , Neurons/cytology , Neurons/metabolism , Neuropeptides/genetics , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/metabolism , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Colchicine/pharmacology , Doublecortin Domain Proteins , Doublecortin Protein , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/ultrastructure , Humans , Locomotion/drug effects , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/drug effects , Microtubule-Organizing Center/ultrastructure , Mutation/genetics , Neurons/ultrastructure , Neuropeptides/metabolism , Polymerization/drug effects , Protein Transport/drug effects , Receptors, Cell Surface/metabolism , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism , Synaptic Vesicles/ultrastructure , Touch
14.
J Cell Sci ; 120(Pt 16): 2963-73, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17666432

ABSTRACT

The early Caenorhabditis elegans embryo is well suited for investigating microtubule-dependent cell division processes. In the one-cell stage, the XMAP215 homologue ZYG-9, associated with the TACC protein TAC-1, promotes microtubule growth during interphase and mitosis, whereas the doublecortin domain protein ZYG-8 is required for anaphase spindle positioning. How ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule-dependent processes throughout the cell cycle is not fully understood. Here, we identify new temperature-sensitive alleles of zyg-9 and tac-1. Analysis of ZYG-9 and TAC-1 distribution in these mutants identifies amino acids important for centrosomal targeting and for stability of the two proteins. This analysis also reveals that TAC-1 is needed for correct ZYG-9 centrosomal enrichment. Moreover, we find that ZYG-9, but not TAC-1, is limiting for microtubule-dependent processes in one-cell-stage embryos. Using two of these alleles to rapidly inactivate ZYG-9-TAC-1 function, we establish that this complex is required for correct anaphase spindle positioning. Furthermore, we uncover that ZYG-9-TAC-1 and ZYG-8 function together during meiosis, interphase and mitosis. We also find that TAC-1 physically interacts with ZYG-8 through its doublecortin domain, and that in vivo TAC-1 and ZYG-8 are part of a complex that does not contain ZYG-9. Taken together, these findings indicate that ZYG-9-TAC-1 and ZYG-8 act in a partially redundant manner to ensure correct microtubule assembly throughout the cell cycle of early C. elegans embryos.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Cell Cycle Proteins/metabolism , Cell Cycle , Embryo, Nonmammalian/cytology , Microtubules/metabolism , Alleles , Anaphase , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Embryo Loss , Embryo, Nonmammalian/metabolism , Mutation/genetics , Phenotype , Protein Binding , Protein Structure, Tertiary , Spindle Apparatus/metabolism
15.
Curr Biol ; 13(17): 1488-98, 2003 Sep 02.
Article in English | MEDLINE | ID: mdl-12956950

ABSTRACT

BACKGROUND: Modulation of microtubule dynamics is crucial for proper cell division. While a large body of work has made important contributions to our understanding of the mechanisms governing microtubule dynamics in vitro, much remains to be learned about how these mechanisms operate in vivo. RESULTS: We identified TAC-1 as the sole TACC (Transforming Acidic Coiled Coil) protein in C. elegans. TAC-1 consists essentially of a TACC domain, in contrast to the much larger members of this protein family in other species. We find that tac-1 is essential for pronuclear migration and spindle elongation in one-cell-stage C. elegans embryos. Using an in vivo FRAP-based assay, we establish that inactivation of tac-1 results in defective microtubule assembly. TAC-1 is present in the cytoplasm and is enriched at centrosomes in a cell cycle-dependent manner. Centrosomal localization is independent of microtubules but requires the activity of gamma-tubulin and the Aurora-A kinase AIR-1. By conducting FRAP analysis in embryos expressing GFP-TAC-1, we find that centrosomal TAC-1 exchanges rapidly with the cytoplasmic pool. Importantly, we establish that TAC-1 physically interacts with ZYG-9, a microtubule-associated protein (MAP) of the XMAP215 family, both in vitro and in vivo. Furthermore, we also uncover that TAC-1 and ZYG-9 stabilize each other in C. elegans embryos. CONCLUSIONS: Our findings identify TAC-1 as a core structural and functional member of the evolutionarily conserved TACC family of proteins and suggest that mutual stabilization between TACC and XMAP215 proteins is a key feature ensuring microtubule assembly in vivo.


Subject(s)
Caenorhabditis elegans/embryology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism , Animals , Blotting, Western , Caenorhabditis elegans/metabolism , Chromosome Mapping , Fluorescence Recovery After Photobleaching , Fluorescent Antibody Technique , Microscopy, Confocal , Precipitin Tests , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...