Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 259: 112658, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964199

ABSTRACT

Many microbes produce siderophores, which are extremely potent weapons capable of stealing iron ions from human tissues, fluids and cells and transferring them into bacteria through their appropriate porins. We have recently designed a multi-block molecule, each block having a dedicated role. The first component is an antimicrobial peptide, whose good effectiveness against some bacterial strains was gradually improved through interactive sequence modifications. Connected to this block is a flexible bio-band, also optimized in length, which terminates in a hydroxyamide unit, a strong metal binder. Thus, the whole molecule brings together two pieces that work synergistically to fight infection. To understand if the peptide unit, although modified with a long tail, preserves the structure and therefore the antimicrobial activity, and to characterize the mechanism of interaction with bio-membrane models mimicking Gram-negative membranes, we performed a set of fluorescence-based experiments and circular dichroism studies, which further supported our design of a combination of two different entities working synergistically. The chelating activity and iron(III) binding of the peptide was confirmed by iron(III) paramagnetic NMR analyses, and through a competitive assay with ethylenediamine-tetra acetic acid by ultraviolet-visible spectroscopy. The complexation parameters, the Michaelis constant K, and the number of sites n, evaluated with spectrophotometric techniques are confirmed by Fe(III) paramagnetic NMR analyses here reported. In conclusion, we showed that the coupling of antimicrobial capabilities with iron-trapping capabilities works well in the treatment of infectious diseases caused by Gram-negative pathogens.

2.
ACS Infect Dis ; 10(7): 2403-2418, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38848266

ABSTRACT

Staphylococcus aureus, a bacterium resistant to multiple drugs, is a significant cause of illness and death worldwide. Antimicrobial peptides (AMPs) provide an excellent potential strategy to cope with this threat. Recently, we characterized a derivative of the frog-skin AMP esculentin-1a, Esc(1-21) (1) that is endowed with potent activity against Gram-negative bacteria but poor efficacy against Gram-positive strains. In this study, three analogues of peptide 1 were designed by replacing Gly8 with α-aminoisobutyric acid (Aib), Pro, and dPro (2-4, respectively). The single substitution Gly8 → Aib8 in peptide 2 makes it active against the planktonic form of Gram-positive bacterial strains, especially Staphylococcus aureus, including multidrug-resistant clinical isolates, with an improved biostability without resulting in cytotoxicity to mammalian cells. Moreover, peptide 2 showed a higher antibiofilm activity than peptide 1 against both reference and clinical isolates of S. aureus. Peptide 2 was also able to induce rapid bacterial killing, suggesting a membrane-perturbing mechanism of action. Structural analysis of the most active peptide 2 evidenced that the improved biological activity of peptide 2 is the consequence of a combination of higher biostability, higher α helical content, and ability to reduce membrane fluidity and to adopt a distorted helix, bent in correspondence of Aib8. Overall, this study has shown how a strategic single amino acid substitution is sufficient to enlarge the spectrum of activity of the original peptide 1, and improve its biological properties for therapeutic purposes, thus paving the way to optimize AMPs for the development of new broad-spectrum anti-infective agents.


Subject(s)
Amino Acid Substitution , Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus aureus , Biofilms/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , Amphibian Proteins/pharmacology , Amphibian Proteins/chemistry , Amphibian Proteins/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Animals , Drug Resistance, Bacterial
3.
Int J Pharm ; 661: 124389, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942185

ABSTRACT

We have recently witnessed that considerable progresses have been made in the rapid detection and appropriate treatments of COVID-19, but still this virus remains one of the main targets of world research. Based on the knowledge of the complex mechanism of viral infection we designed peptide-dendrimer inhibitors of SARS-CoV-2with the aim to block cell infection through interfering with the host-pathogen interactions. We used two different strategies: i) the first one aims at hindering the virus anchorage to the human cell; ii) the second -strategy points to interfere with the mechanism of virus-cell membrane fusion. We propose the use of different nanosized carriers, formed by several carbosilane dendritic wedges to deliver two different peptides designed to inhibit host interaction or virus entry. The antiviral activity of the peptide-dendrimers, as well as of free peptides and free dendrimers was evaluated through the use of SARS-CoV-2 pseudotyped lentivirus. The results obtained show that peptides designed to block host-pathogen interaction represent a valuable strategy for viral inhibition.

4.
Int J Nanomedicine ; 19: 6057-6084, 2024.
Article in English | MEDLINE | ID: mdl-38911501

ABSTRACT

Introduction: The design of delivery tools that efficiently transport drugs into cells remains a major challenge in drug development for most pathological conditions. Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with poor prognosis and limited effective therapeutic options. Purpose: In TNBC treatment, chemotherapy remains the milestone, and doxorubicin (Dox) represents the first-line systemic treatment; however, its non-selective distribution causes a cascade of side effects. To address these problems, we developed a delivery platform based on the self-assembly of amphiphilic peptides carrying several moieties on their surfaces, aimed at targeting, enhancing penetration, and therapy. Methods: Through a single-step self-assembly process, we used amphiphilic peptides to obtain nanofibers decorated on their surfaces with the selected moieties. The surface of the nanofiber was decorated with a cell-penetrating peptide (gH625), an EGFR-targeting peptide (P22), and Dox bound to the cleavage sequence selectively recognized and cleaved by MMP-9 to obtain on-demand drug release. Detailed physicochemical and cellular analyses were performed. Results: The obtained nanofiber (NF-Dox) had a length of 250 nm and a diameter of 10 nm, and it was stable under dilution, ionic strength, and different pH environments. The biological results showed that the presence of gH625 favored the complete internalization of NF-Dox after 1h in MDA-MB 231 cells, mainly through a translocation mechanism. Interestingly, we observed the absence of toxicity of the carrier (NF) on both healthy cells such as HaCaT and TNBC cancer lines, while a similar antiproliferative effect was observed on TNBC cells after the treatment with the free-Dox at 50 µM and NF-Dox carrying 7.5 µM of Dox. Discussion: We envision that this platform is extremely versatile and can be used to efficiently carry and deliver diverse moieties. The knowledge acquired from this study will provide important guidelines for applications in basic research and biomedicine.


Subject(s)
Doxorubicin , Drug Delivery Systems , Nanofibers , Triple Negative Breast Neoplasms , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Humans , Nanofibers/chemistry , Cell Line, Tumor , Female , Drug Delivery Systems/methods , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacokinetics , Drug Liberation , Cell Survival/drug effects , Peptides/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , ErbB Receptors/metabolism , Matrix Metalloproteinase 9/metabolism , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
5.
J Pept Sci ; 30(5): e3558, 2024 May.
Article in English | MEDLINE | ID: mdl-38115215

ABSTRACT

The engineering of intracellular delivery systems with the goal of achieving personalized medicine has been encouraged by advances in nanomaterial science as well as a greater understanding of diseases and of the biochemical pathways implicated in many disorders. The development of vectors able to transport the drug to a target location and release it only on demand is undoubtedly the primary issue. From a molecular perspective, the topography of drug carrier surfaces is directly related to the design of an effective drug carrier because it provides a physical hint to modifying its interactions with biological systems. For instance, the initial ratio of hydrophilic to hydrophobic surfaces and the changes brought about by external factors enable the release or encapsulation of a therapeutic molecule and the ability of the nanosystem to cross biological barriers and reach its target without causing systemic toxicity. The first step in creating new materials with enhanced functionality is to comprehend and characterize the interplay between hydrophilic and hydrophobic molecules at the molecular level. Therefore, the focus of this review is on the function of hydrophobicity, which is essential for matching the complexity of biological environments with the intended functionality.


Subject(s)
Drug Carriers , Drug Delivery Systems , Hydrophobic and Hydrophilic Interactions , Drug Carriers/chemistry
6.
Bioinorg Chem Appl ; 2023: 8608428, 2023.
Article in English | MEDLINE | ID: mdl-38028018

ABSTRACT

Numerous supramolecular platforms inspired by natural self-assembly are exploited as drug delivery systems. The spontaneous arrangement of single building blocks into inorganic and organic structures is determined and controlled by noncovalent forces such as electrostatic interactions, π-π interactions, hydrogen bonds, and van der Waals interactions. This review describes the main structures and characteristics of several building blocks used to obtain stable, self-assembling nanostructures tailored for numerous biological applications. Owing to their versatility, biocompatibility, and controllability, these nanostructures find application in diverse fields ranging from drug/gene delivery, theranostics, tissue engineering, and nanoelectronics. Herein, we described the different approaches used to design and functionalize these nanomaterials to obtain selective drug delivery in a specific disease. In particular, the review highlights the efficiency of these supramolecular structures in applications related to infectious diseases and cancer.

7.
Ann Rheum Dis ; 82(11): 1415-1428, 2023 11.
Article in English | MEDLINE | ID: mdl-37580108

ABSTRACT

OBJECTIVES: Interleukin (IL) 17s cytokines are key drivers of inflammation that are functionally dysregulated in several human immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA), psoriasis and inflammatory bowel disease (IBD). Targeting these cytokines has some therapeutic benefits, but issues associated with low therapeutic efficacy and immunogenicity for subgroups of patients or IMIDs reduce their clinical use. Therefore, there is an urgent need to improve the coverage and efficacy of antibodies targeting IL-17A and/or IL-17F and IL-17A/F heterodimer. METHODS AND RESULTS: Here, we initially identified a bioactive 20 amino acid IL-17A/F-derived peptide (nIL-17) that mimics the pro-inflammatory actions of the full-length proteins. Subsequently, we generated a novel anti-IL-17 neutralising monoclonal antibody (Ab-IPL-IL-17) capable of effectively reversing the pro-inflammatory, pro-migratory actions of both nIL-17 and IL-17A/F. Importantly, we demonstrated that Ab-IPL-IL-17 has less off-target effects than the current gold-standard biologic, secukinumab. Finally, we compared the therapeutic efficacy of Ab-IPL-IL-17 with reference anti-IL-17 antibodies in preclinical murine models and samples from patients with RA and IBD. We found that Ab-IPL-IL-17 could effectively reduce clinical signs of arthritis and neutralise elevated IL-17 levels in IBD patient serum. CONCLUSIONS: Collectively, our preclinical and in vitro clinical evidence indicates high efficacy and therapeutic potency of Ab-IPL-IL-17, supporting the rationale for large-scale clinical evaluation of Ab-IPL-IL-17 in patients with IMIDs.


Subject(s)
Arthritis, Rheumatoid , Biological Products , Inflammatory Bowel Diseases , Humans , Mice , Animals , Interleukin-17 , Immunomodulating Agents , Cytokines , Inflammatory Bowel Diseases/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use
8.
Biomolecules ; 13(7)2023 06 21.
Article in English | MEDLINE | ID: mdl-37509057

ABSTRACT

Fungi in the genus Talaromyces occur in every environment in both terrestrial and marine contexts, where they have been quite frequently found in association with plants and animals. The relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabolites, and Talaromyces species represent a prolific source of these compounds. This review highlights the biosynthetic potential of marine-derived Talaromyces strains, using accounts from the literature published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these isolates and about 45% of them were identified as new products, representing a various assortment of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones, phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and the broad range of biological properties that have been disclosed in preliminary assays qualify these fungi as a valuable source of products to be exploited for manifold biotechnological applications.


Subject(s)
Biological Products , Polyketides , Talaromyces , Animals , Biological Products/chemistry , Polyketides/chemistry , Biotechnology , Isocoumarins
9.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986538

ABSTRACT

Antimicrobial peptides (AMPs) have recently gained attention as a viable solution for combatting antibiotic resistance due to their numerous advantages, including their broad-spectrum activity, low propensity for inducing resistance, and low cytotoxicity. Unfortunately, their clinical application is limited due to their short half-life and susceptibility to proteolytic cleavage by serum proteases. Indeed, several chemical strategies, such as peptide cyclization, N-methylation, PEGylation, glycosylation, and lipidation, are widely used for overcoming these issues. This review describes how lipidation and glycosylation are commonly used to increase AMPs' efficacy and engineer novel AMP-based delivery systems. The glycosylation of AMPs, which involves the conjugation of sugar moieties such as glucose and N-acetyl galactosamine, modulates their pharmacokinetic and pharmacodynamic properties, improves their antimicrobial activity, and reduces their interaction with mammalian cells, thereby increasing selectivity toward bacterial membranes. In the same way, lipidation of AMPs, which involves the covalent addition of fatty acids, has a significant impact on their therapeutic index by influencing their physicochemical properties and interaction with bacterial and mammalian membranes. This review highlights the possibility of using glycosylation and lipidation strategies to increase the efficacy and activity of conventional AMPs.

10.
Dalton Trans ; 52(13): 3954-3963, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36744636

ABSTRACT

Ferric iron is an essential nutrient for bacterial growth. Pathogenic bacteria synthesize iron-chelating entities known as siderophores to sequestrate ferric iron from host organisms in order to colonize and replicate. The development of antimicrobial peptides (AMPs) conjugated to iron chelators represents a promising strategy for reducing the iron availability, inducing bacterial death, and enhancing simultaneously the efficacy of AMPs. Here we designed, synthesized, and characterized three hydroxamate-based peptides Pep-cyc1, Pep-cyc2, and Pep-cyc3, derived from a cyclic temporin L peptide (Pep-cyc) developed previously by some of us. The Fe3+ complex formation of each ligand was characterized by UV-visible spectroscopy, mass spectrometry, and IR and NMR spectroscopies. In addition, the effect of Fe3+ on the stabilization of the α-helix conformation of hydroxamate-based peptides and the cotton effect were examined by CD spectroscopy. Moreover, the antimicrobial results obtained in vitro on some Gram-negative strains (K. pneumoniae and E. coli) showed the ability of each peptide to chelate efficaciously Fe3+ obtaining a reduction of MIC values in comparison to their parent peptide Pep-cyc. Our results demonstrated that siderophore conjugation could increase the efficacy and selectivity of AMPs used for the treatment of infectious diseases caused by Gram-negative pathogens.


Subject(s)
Escherichia coli , Iron , Iron/pharmacology , Siderophores/chemistry , Iron Chelating Agents/pharmacology , Iron Chelating Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Hydroxamic Acids/pharmacology , Bacteria
11.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834512

ABSTRACT

Chronic lung infections in cystic fibrosis (CF) patients are triggered by multidrug-resistant bacteria such as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. The CF airways are considered ideal sites for the colonization and growth of bacteria and fungi that favor the formation of mixed biofilms that are difficult to treat. The inefficacy of traditional antibiotics reinforces the need to find novel molecules able to fight these chronic infections. Antimicrobial peptides (AMPs) represent a promising alternative for their antimicrobial, anti-inflammatory, and immunomodulatory activities. We developed a more serum-stable version of the peptide WMR (WMR-4) and investigated its ability to inhibit and eradicate C. albicans, S. maltophilia, and A. xylosoxidans biofilms in both in vitro and in vivo studies. Our results suggest that the peptide is able better to inhibit than to eradicate both mono and dual-species biofilms, which is further confirmed by the downregulation of some genes involved in biofilm formation or in quorum-sensing signaling. Biophysical data help to elucidate its mode of action, showing a strong interaction of WMR-4 with lipopolysaccharide (LPS) and its insertion in liposomes mimicking Gram-negative and Candida membranes. Our results support the promising therapeutic application of AMPs in the treatment of mono- and dual-species biofilms during chronic infections in CF patients.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/microbiology , Persistent Infection , Anti-Bacterial Agents/pharmacology , Peptides , Biofilms , Pseudomonas aeruginosa , Microbial Sensitivity Tests
12.
Article in English | MEDLINE | ID: mdl-35761486

ABSTRACT

Trace metals can be divided into two subgroups considering their pathophysiological effects: the first consists of microelements essential for life (arsenic, cobalt, chromium, copper, fluorine, iron, iodine, manganese, molybdenum, nickel, selenium, silicon, tin, vanadium and zinc), implicated in important metabolic processes; the second includes toxic microelements, such as cadmium (Cd), mercury (Hg), chromium (Cr), and lead (Pb) for living organisms, even at low concentrations. These metals contribute to serious consequences for human health, including male infertility. Studies performed in several in vitro and in vivo models revealed that environmental exposure to toxic pollutants, as heavy metals, negatively affects human male fertility. Stem cells, due to their ability to self-renew and differentiate in several cell types, have been proposed as a useful tool in assisted reproductive technology, permitting the spermatogenesis recovery in patients with irreversible infertility. Considering the effects of heavy metals on male fertility and, from a demographic point of view, the decreased fertility ratio, further strategies are required to maintain a sustainable turn-over of 2 children for woman. We discuss here the findings on the biological effects of heavy metal pollution in the male fertility and underline the related socioeconomic impact on population demography.


Subject(s)
Mercury , Metals, Heavy , Trace Elements , Child , Female , Humans , Male , Chromium , Fertility , Metals, Heavy/toxicity , Socioeconomic Factors
13.
J Enzyme Inhib Med Chem ; 38(1): 36-50, 2023 12.
Article in English | MEDLINE | ID: mdl-36305289

ABSTRACT

The increasing resistance of fungi to conventional antifungal drugs has prompted worldwide the search for new compounds. In this work, we investigated the antifungal properties of acylated Temporin L derivatives, Pent-1B and Dec-1B, against Candida albicans, including the multidrug-resistant strains. Acylated peptides resulted to be active both on reference and clinical strains with MIC values ranging from 6.5 to 26 µM, and they did not show cytotoxicity on human keratinocytes. In addition, we also observed a synergistic or additive effect with voriconazole for peptides Dec-1B and Pent-1B through the checkerboard assay on voriconazole-resistant Candida strains. Moreover, fluorescence-based assays, NMR spectroscopy, and confocal microscopy elucidated a potential membrane-active mechanism, consisting of an initial electrostatic interaction of acylated peptides with fungal membrane, followed by aggregation and insertion into the lipid bilayer and causing membrane perturbation probably through a carpeting effect.


Subject(s)
Antifungal Agents , Candida albicans , Drug Resistance, Multiple, Fungal , Humans , Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Candida albicans/drug effects , Microbial Sensitivity Tests , Voriconazole/pharmacology
14.
Biomedicines ; 10(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36289905

ABSTRACT

Parkinson's disease (PD) is an aggressive and devastating age-related disorder. Although the causes are still unclear, several factors, including genetic and environmental, are involved. Except for symptomatic drugs, there are not, to date, any real cures for PD. For this purpose, it is necessary develop a model to better study this disease. Neuroblastoma cell line, SH-SY5Y, differentiated with retinoic acid represents a good in vitro model to explore PD, since it maintains growth cells to differentiated neurons. In the present study, SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that induces Parkinsonism, and the neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP), delivered by functionalized liposomes in a blood-brain barrier fluid dynamic model, were evaluated. We demonstrated PACAP neuroprotective effects when delivered by gH625-liposome on MPP+-damaged SH-SY5Y spheroids.

15.
Antibiotics (Basel) ; 11(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36289944

ABSTRACT

Temporin family is one of the largest among antimicrobial peptides (AMPs), which act mainly by penetrating and disrupting the bacterial membranes. To further understand the relationship between the physical-chemical properties and their antimicrobial activity and selectivity, an analogue of Temporin L, [Nle1, dLeu9, dLys10]TL (Nle-Phe-Val-Pro-Trp-Phe-Lys-Phe-dLeu-dLys-Arg-Ile-Leu-CONH2) has been developed in the present work. The design strategy consisted of the addition of a norleucine residue at the N-terminus of the lead peptide sequence, [dLeu9, dLys10]TL, previously developed by our group. This modification promoted an increase of peptide hydrophobicity and, interestingly, more efficient activity against both Gram-positive and Gram-negative strains, without affecting human keratinocytes and red blood cells survival compared to the lead peptide. Thus, this novel compound was subjected to biophysical studies, which showed that the peptide [Nle1, dLeu9, dLys10]TL is unstructured in water, while it adopts ß-type conformation in liposomes mimicking bacterial membranes, in contrast to its lead peptide forming α-helical aggregates. After its aggregation in the bacterial membrane, [Nle1, dLeu9, dLys10]TL induced membrane destabilization and deformation. In addition, the increase of peptide hydrophobicity did not cause a loss of anti-inflammatory activity of the peptide [Nle1, dLeu9, dLys10]TL in comparison with its lead peptide. In this study, our results demonstrated that positive net charge, optimum hydrophobic-hydrophilic balance, and chain length remain the most important parameters to be addressed while designing small cationic AMPs.

16.
Eur J Med Chem ; 243: 114781, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36152385

ABSTRACT

Suppressors of cytokine signaling 1 (SOCS1) protein, a negative regulator of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that mimetics of KIR-SOCS1 can be potent therapeutics in several disorders (e.g., neurological, autoimmune or cardiovascular diseases). In this work, starting from a recently identified cyclic peptidomimetic of KIR-SOCS1, icPS5(Nal1), to optimize the peptide structure and improve its biological activity, we designed novel derivatives, containing crucial amino acids substitutions and/or modifications affecting the ring size. By combining microscale thermophoresis (MST), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR) and computational studies, we showed that the cycle size plays a key role in the interaction with JAK2 and the substitution of native residues with un-natural building blocks is a valid tool to maintain low-micromolar affinity toward JAK2, greatly increasing their serum stability. These findings contribute to increase the structural knowledge required for the recognition of SOCS1/JAK2 and to progress towards their conversion into more drug-like compounds.


Subject(s)
Janus Kinases , Suppressor of Cytokine Signaling Proteins , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/chemistry , Suppressor of Cytokine Signaling Proteins/metabolism , Janus Kinases/metabolism , Signal Transduction , Cytokines/metabolism
17.
Front Physiol ; 13: 932099, 2022.
Article in English | MEDLINE | ID: mdl-36060696

ABSTRACT

The blood-brain barrier (BBB) selectively protects the central nervous system (CNS) from external insults, but its function can represent a limit for the passage of therapeutic molecules. Numerous in vitro models of the BBB have been realized in order to study the passage of drugs for neurodegenerative diseases, but these in vitro models are not very representative of the physiological conditions because of a limited supply of oxygen and nutrients due to static conditions. To avoid this phenomenon, we used a millifluidic bioreactor model that ensures a circulation of the medium and, therefore, of the nutrients, thanks to the continuous laminar flow. This dynamic model consists of a double-culture chamber separated by a membrane on which brain endothelial cells are cultured in order to evaluate the passage of the drug. Furthermore, in the lower chamber, SH-SY5Y were seeded as 3D spheroids to evaluate the drug passage through these cells. As nanodelivery system, we used liposomes functionalized with viral fusion peptide to evaluate the passage of a neuroprotective agent, pituitary adenylate cyclase-activating polypeptide (PACAP), through the dynamic in vitro model of the BBB. We showed that our nanodelivery system, made of functionalized liposomes and loaded with specific molecules, efficiently crosses the in vitro fluid-dynamic model of the BBB. Our findings represent an important step for further experimental investigations on PACAP administration as a therapeutic agent by an enhanced drug delivery system. Our results can improve the diffusion of good practice in neuroscience laboratories, helping to spread the 3R rules.

18.
Pharmaceutics ; 14(8)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893800

ABSTRACT

Self-assembled peptides possess remarkable potential as targeted drug delivery systems and key applications dwell anti-cancer therapy. Peptides can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions (pH, temperature, ionic strength). Herein, we investigated the development of self-assembled peptide-based nanofibers (NFs) with the inclusion of a cell-penetrating peptide (namely gH625) and a matrix metalloproteinase-9 (MMP-9) responsive sequence, which proved to enhance respectively the penetration and tumor-triggered cleavage to release Doxorubicin in Triple Negative Breast Cancer cells where MMP-9 levels are elevated. The NFs formulation has been optimized via critical micelle concentration measurements, fluorescence, and circular dichroism. The final nanovectors were characterized for morphology (TEM), size (hydrodynamic diameter), and surface charge (zeta potential). The Doxo loading and release kinetics were studied in situ, by optical microspectroscopy (fluorescence and surface-enhanced Raman scattering-SERS). Confocal spectral imaging of the Doxo fluorescence was used to study the TNBC models in vitro, in cells with various MMP-9 levels, the drug delivery to cells as well as the resulting cytotoxicity profiles. The results confirm that these NFs are a promising platform to develop novel nanovectors of Doxo, namely in the framework of TNBC treatment.

19.
J Enzyme Inhib Med Chem ; 37(1): 1987-1994, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35880250

ABSTRACT

We have recently developed a new synthetic methodology that provided both N-aryl-5-hydroxytriazoles and N-pyridine-4-alkyl triazoles. A selection of these products was carried through virtual screening towards targets that are contemporary and validated for drug discovery and development. This study determined a number of potential structure target dyads of which N-pyridinium-4-carboxylic-5-alkyl triazole displayed the highest score specificity towards KAT2A. Binding affinity tests of abovementioned triazole and related analogs towards KAT2A confirmed the predictions of the in-silico assay. Finally, we have run in vitro inhibition assays of selected triazoles towards KAT2A; the ensemble of binding and inhibition assays delivered pyridyl-triazoles carboxylates as the prototype of a new class of inhibitors of KAT2A.


Subject(s)
Acetyltransferases , Triazoles , Carboxylic Acids/chemistry , Molecular Structure , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology
20.
Pharmaceutics ; 14(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35745740

ABSTRACT

During an infection, a single or multispecies biofilm can develop. Infections caused by non-dermatophyte molds, such as Fusarium spp. and yeasts, such as Candida spp., are particularly difficult to treat due to the formation of a mixed biofilm of the two species. Fusarium oxysporum is responsible for approximately 20% of human fusariosis, while Candida albicans is responsible for superficial mucosal and dermal infections and for disseminated bloodstream infections with a mortality rate above 40%. This study aims to investigate the interactions between C. albicans and F. oxysporum dual-species biofilm, considering variable formation conditions. Further, the ability of the WMR peptide, a modified version of myxinidin, to eradicate the mixed biofilm when used alone or in combination with fluconazole (FLC) was tested, and the efficacy of the combination of WMR and FLC at low doses was assessed, as well as its effect on the expression of some biofilm-related adhesin and hyphal regulatory genes. Finally, in order to confirm our findings in vivo and explore the synergistic effect of the two drugs, we utilized the Galleria mellonella infection model. We concluded that C. albicans negatively affects F. oxysporum growth in mixed biofilms. Combinatorial treatment by WMR and FLC significantly reduced the biomass and viability of both species in mature mixed biofilms, and these effects coincided with the reduced expression of biofilm-related genes in both fungi. Our results were confirmed in vivo since the synergistic antifungal activity of WMR and FLC increased the survival of infected larvae and reduced tissue invasion. These findings highlight the importance of drug combinations as an alternative treatment for C. albicans and F. oxysporum mixed biofilms.

SELECTION OF CITATIONS
SEARCH DETAIL
...