Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 619(7968): 41-45, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37344593

ABSTRACT

The centre of the Milky Way Galaxy hosts a black hole with a solar mass of about 4 million (Sagittarius A* (Sgr A)) that is very quiescent at present with a luminosity many orders of magnitude below those of active galactic nuclei1. Reflection of X-rays from Sgr A* by dense gas in the Galactic Centre region offers a means to study its past flaring activity on timescales of hundreds and thousands of years2. The shape of the X-ray continuum and the strong fluorescent iron line observed from giant molecular clouds in the vicinity of Sgr A* are consistent with the reflection scenario3-5. If this interpretation is correct, the reflected continuum emission should be polarized6. Here we report observations of polarized X-ray emission in the direction of the molecular clouds in the Galactic Centre using the Imaging X-ray Polarimetry Explorer. We measure a polarization degree of 31% ± 11%, and a polarization angle of -48° ± 11°. The polarization angle is consistent with Sgr A* being the primary source of the emission, and the polarization degree implies that some 200 years ago, the X-ray luminosity of Sgr A* was briefly comparable to that of a Seyfert galaxy.

2.
Nature ; 612(7941): 658-660, 2022 12.
Article in English | MEDLINE | ID: mdl-36543953

ABSTRACT

Pulsar wind nebulae are formed when outflows of relativistic electrons and positrons hit the surrounding supernova remnant or interstellar medium at a shock front. The Vela pulsar wind nebula is powered by a young pulsar (B0833-45, aged 11,000 years)1 and located inside an extended structure called Vela X, which is itself inside the supernova remnant2. Previous X-ray observations revealed two prominent arcs that are bisected by a jet and counter jet3,4. Radio maps have shown high linear polarization of 60% in the outer regions of the nebula5. Here we report an X-ray observation of the inner part of the nebula, where polarization can exceed 60% at the leading edge-approaching the theoretical limit of what can be produced by synchrotron emission. We infer that, in contrast with the case of the supernova remnant, the electrons in the pulsar wind nebula are accelerated with little or no turbulence in a highly uniform magnetic field.

3.
Science ; 378(6620): 646-650, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36356124

ABSTRACT

Magnetars are neutron stars with ultrastrong magnetic fields, which can be observed in x-rays. Polarization measurements could provide information on their magnetic fields and surface properties. We observed polarized x-rays from the magnetar 4U 0142+61 using the Imaging X-ray Polarimetry Explorer and found a linear polarization degree of 13.5 ± 0.8% averaged over the 2- to 8-kilo-electron volt band. The polarization changes with energy: The degree is 15.0 ± 1.0% at 2 to 4 kilo-electron volts, drops below the instrumental sensitivity ~4 to 5 kilo-electron volts, and rises to 35.2 ± 7.1% at 5.5 to 8 kilo-electron volts. The polarization angle also changes by 90° at ~4 to 5 kilo-electron volts. These results are consistent with a model in which thermal radiation from the magnetar surface is reprocessed by scattering off charged particles in the magnetosphere.

4.
Sci Adv ; 4(2): eaao7228, 2018 02.
Article in English | MEDLINE | ID: mdl-29503868

ABSTRACT

Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.

5.
Med Phys ; 43(5): 2118, 2016 May.
Article in English | MEDLINE | ID: mdl-27147324

ABSTRACT

PURPOSE: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. METHODS: A 650 µm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 µm resulting in pixel pitch of 60 and 51.96 µm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 µGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. RESULTS: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 µm. After resampling to 54 µm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. CONCLUSIONS: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.


Subject(s)
Angiography, Digital Subtraction/methods , Cadmium Compounds , Photons , Radiometry/instrumentation , Tellurium , Therapy, Computer-Assisted/instrumentation , Alloys , Blood Vessels/diagnostic imaging , Fingers/diagnostic imaging , Humans , Linear Models , Models, Anatomic , Phantoms, Imaging , Polymethyl Methacrylate , Radiometry/methods , Stents , Therapy, Computer-Assisted/methods , Wrist/diagnostic imaging , X-Rays
6.
Opt Express ; 23(12): 16473-80, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193618

ABSTRACT

Compatibility with polychromatic radiation is an important requirement for an imaging system using conventional rotating anode X-ray sources. With a commercially available energy-resolving single-photon-counting detector we investigated how broadband radiation affects the performance of a multi-modal edge-illumination phase-contrast imaging system. The effect of X-ray energy on phase retrieval is presented, and the achromaticity of the method is experimentally demonstrated. Comparison with simulated measurements integrating over the energy spectrum shows that there is no significant loss of image quality due to the use of polychromatic radiation. This means that, to a good approximation, the imaging system exploits radiation in the same way at all energies typically used in hard-X-ray imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...