Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683144

ABSTRACT

PDAC therapeutic resistance is largely attributed to a unique tumor microenvironment embedded with an abundance of cancer associated fibroblasts (CAFs). Distinct CAF populations were recently identified, but the phenotypic drivers and specific impact of CAF heterogeneity remain unclear. In this study, we identify a subpopulation of senescent myofibroblastic CAFs (SenCAFs) in mouse and human PDAC. These SenCAFs are a phenotypically distinct subset of myofibroblastic CAFs that localize near tumor ducts and accumulate with PDAC progression. To assess the impact of endogenous SenCAFs in PDAC, we employed a LSL-KRASG12D;p53flox;p48-CRE;INK-ATTAC (KPPC-IA) mouse model of spontaneous PDAC with inducible senescent cell depletion. Depletion of senescent stromal cells in genetic and pharmacologic PDAC models relieved immune suppression by macrophages, delayed tumor progression and increased responsiveness to chemotherapy. Collectively, our findings demonstrate that SenCAFs promote PDAC progression and immune cell dysfunction.

2.
Cancer Discov ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683161

ABSTRACT

The tumor microenvironment (TME) profoundly influences tumorigenesis, with gene expression in the breast TME capable of predicting clinical outcomes. The TME is complex and includes distinct cancer-associated fibroblast (CAF) subtypes whose contribution to tumorigenesis remains unclear. Here, we identify a subset of myofibroblast cancer associated fibroblasts (myCAF) that are senescent (senCAF) in mouse and human breast tumors. Utilizing the MMTV-PyMT;INK-ATTAC (INK) mouse model, we found that senCAF-secreted extracellular matrix specifically limits natural killer (NK) cell cytotoxicity to promote tumor growth. Genetic or pharmacologic senCAF elimination unleashes NK cell killing, restricting tumor growth. Finally, we show that senCAFs are present in Her2+, ER+, and triple negative breast cancer and in ductal carcinoma in situ (DCIS) where they predict tumor recurrence. Together, these findings demonstrate that senCAFs are potently tumor promoting and raise the possibility that targeting them by senolytic therapy could restrain breast cancer development.

4.
Sci Transl Med ; 15(699): eadh8005, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37285399

ABSTRACT

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. Immune checkpoint blockade has improved survival for many patients with NSCLC, but most fail to obtain long-term benefit. Understanding the factors leading to reduced immune surveillance in NSCLC is critical in improving patient outcomes. Here, we show that human NSCLC harbors large amounts of fibrosis that correlates with reduced T cell infiltration. In murine NSCLC models, the induction of fibrosis led to increased lung cancer progression, impaired T cell immune surveillance, and failure of immune checkpoint blockade efficacy. Associated with these changes, we observed that fibrosis leads to numerically and functionally impaired dendritic cells and altered macrophage phenotypes that likely contribute to immunosuppression. Within cancer-associated fibroblasts, distinct changes within the Col13a1-expressing population suggest that these cells produce chemokines to recruit macrophages and regulatory T cells while limiting recruitment of dendritic cells and T cells. Targeting fibrosis through transforming growth factor-ß receptor signaling overcame the effects of fibrosis to enhance T cell responses and improved the efficacy of immune checkpoint blockade but only in the context of chemotherapy. Together, these data suggest that fibrosis in NSCLC leads to reduced immune surveillance and poor responsiveness to checkpoint blockade and highlight antifibrotic therapies as a candidate strategy to overcome immunotherapeutic resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Immune Checkpoint Inhibitors , Tumor Microenvironment , Immunotherapy
5.
J Exp Med ; 220(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-36951731

ABSTRACT

Tumor-associated macrophages (TAMs) are abundant in pancreatic ductal adenocarcinomas (PDACs). While TAMs are known to proliferate in cancer tissues, the impact of this on macrophage phenotype and disease progression is poorly understood. We showed that in PDAC, proliferation of TAMs could be driven by colony stimulating factor-1 (CSF1) produced by cancer-associated fibroblasts. CSF1 induced high levels of p21 in macrophages, which regulated both TAM proliferation and phenotype. TAMs in human and mouse PDACs with high levels of p21 had more inflammatory and immunosuppressive phenotypes. p21 expression in TAMs was induced by both stromal interaction and/or chemotherapy treatment. Finally, by modeling p21 expression levels in TAMs, we found that p21-driven macrophage immunosuppression in vivo drove tumor progression. Serendipitously, the same p21-driven pathways that drive tumor progression also drove response to CD40 agonist. These data suggest that stromal or therapy-induced regulation of cell cycle machinery can regulate both macrophage-mediated immune suppression and susceptibility to innate immunotherapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Humans , Pancreatic Neoplasms/metabolism , Macrophages/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Immunotherapy , Cell Proliferation , Tumor Microenvironment , Cell Line, Tumor
6.
Clin Cancer Res ; 28(24): 5254-5262, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36228156

ABSTRACT

PURPOSE: Targeting focal adhesion kinase (FAK) renders checkpoint immunotherapy effective in pancreatic ductal adenocarcinoma (PDAC) mouse model. Defactinib is a highly potent oral FAK inhibitor that has a tolerable safety profile. PATIENTS AND METHODS: We conducted a multicenter, open-label, phase I study with dose escalation and expansion phases. In dose escalation, patients with refractory solid tumors were treated at five escalating dose levels of defactinib and gemcitabine to identify a recommended phase II dose (RP2D). In expansion phase, patients with metastatic PDAC who progressed on frontline treatment (refractory cohort) or had stable disease (SD) after at least 4 months of standard gemcitabine/nab-paclitaxel (maintenance cohort) were treated at RP2D. Pre- and posttreatment tumor biopsies were performed to evaluate tumor immunity. RESULTS: The triple drug combination was well-tolerated, with no dose-limiting toxicities. Among 20 treated patients with refractory PDAC, the disease control rate (DCR) was 80%, with one partial response (PR) and 15 SDs, and the median progression-free survival (PFS) and overall survival (OS) were 3.6 and 7.8 months, respectively. Among 10 evaluable patients in the maintenance cohort, DCR was 70% with one PR and six SDs. Three patients with SD came off study due to treatment- or disease-related complications. The median PFS and OS on study treatment were 5.0 and 8.3 months, respectively. CONCLUSIONS: The combination of defactinib, pembrolizumab, and gemcitabine was well-tolerated and safe, had promising preliminary efficacy, and showed biomarker activity in infiltrative T lymphocytes. Efficacy of this strategy may require incorporation of more potent chemotherapy in future studies.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Animals , Mice , Gemcitabine , Deoxycytidine , Albumins , Paclitaxel , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Pancreatic Neoplasms/pathology , Adenocarcinoma/pathology , Pancreatic Neoplasms
7.
Cancer Discov ; 12(12): 2774-2799, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36165893

ABSTRACT

The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. SIGNIFICANCE: Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Humans , Focal Adhesion Protein-Tyrosine Kinases , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/radiotherapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/radiotherapy , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor , Pancreatic Neoplasms
8.
Cell Death Dis ; 12(10): 923, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625535

ABSTRACT

Stem and progenitor cells are the main mediators of tissue renewal and repair, both under homeostatic conditions and in response to physiological stress and injury. Hematopoietic system is responsible for the regeneration of blood and immune cells and is maintained by bone marrow-resident hematopoietic stem and progenitor cells (HSPCs). Hematopoietic system is particularly susceptible to injury in response to genotoxic stress, resulting in the risk of bone marrow failure and secondary malignancies in cancer patients undergoing radiotherapy. Here we analyze the in vivo transcriptional response of HSPCs to genotoxic stress in a mouse whole-body irradiation model and, together with p53 ChIP-Seq and studies in p53-knockout (p53KO) mice, characterize the p53-dependent and p53-independent branches of this transcriptional response. Our work demonstrates the p53-independent induction of inflammatory transcriptional signatures in HSPCs in response to genotoxic stress and identifies multiple novel p53-target genes induced in HSPCs in response to whole-body irradiation. In particular, we establish the direct p53-mediated induction of P2X7 expression on HSCs and HSPCs in response to genotoxic stress. We further demonstrate the role of P2X7 in hematopoietic response to acute genotoxic stress, with P2X7 deficiency significantly extending mouse survival in irradiation-induced hematopoietic failure. We also demonstrate the role of P2X7 in the context of long-term HSC regenerative fitness following sublethal irradiation. Overall our studies provide important insights into the mechanisms of HSC response to genotoxic stress and further suggest P2X7 as a target for pharmacological modulation of HSC fitness and hematopoietic response to genotoxic injury.


Subject(s)
DNA Damage , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Receptors, Purinergic P2X7/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Binding Sites , Cell Line , Chromosome Mapping , DNA/metabolism , Gene Expression Regulation , Hematopoiesis/genetics , Homeostasis , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Transcription, Genetic , Whole-Body Irradiation
9.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34520398

ABSTRACT

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.


Subject(s)
Arginase/physiology , Breast Neoplasms/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Immune Tolerance , Myeloid Cells/enzymology , Tumor Microenvironment , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclic AMP/physiology , Female , Humans , Mice , Mice, Inbred C57BL
10.
J Cell Mol Med ; 25(14): 7089-7094, 2021 07.
Article in English | MEDLINE | ID: mdl-34114734

ABSTRACT

MYSM1 is a chromatin-binding protein, widely investigated for its functions in haematopoiesis in human and mouse; however, its role in haematologic malignancies remains unexplored. Here, we investigate the cross-talk between MYSM1 and oncogenic cMYC in the transcriptional regulation of genes encoding ribosomal proteins, and the implications of these mechanisms for cMYC-driven carcinogenesis. We demonstrate that in cMYC-driven B cell lymphoma in mouse models, MYSM1-loss represses ribosomal protein gene expression and protein synthesis. Importantly, the loss of MYSM1 also strongly inhibits cMYC oncogenic activity and protects against B cell lymphoma onset and progression in the mouse models. This advances the understanding of the molecular and transcriptional mechanisms of lymphomagenesis, and suggests MYSM1 as a possible drug target for cMYC-driven malignancies.


Subject(s)
Lymphoma, B-Cell/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Trans-Activators/deficiency , Ubiquitin-Specific Proteases/deficiency , Animals , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell/genetics , Mice , Proto-Oncogene Proteins c-myc/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
11.
Elife ; 92020 08 05.
Article in English | MEDLINE | ID: mdl-32755539

ABSTRACT

Cancer-associated fibroblasts (CAFs) are a heterogeneous population of mesenchymal cells supporting tumor progression, whose origin remains to be fully elucidated. Osterix (Osx) is a marker of osteogenic differentiation, expressed in skeletal progenitor stem cells and bone-forming osteoblasts. We report Osx expression in CAFs and by using Osx-cre;TdTomato reporter mice we confirm the presence and pro-tumorigenic function of TdTOSX+ cells in extra-skeletal tumors. Surprisingly, only a minority of TdTOSX+ cells expresses fibroblast and osteogenic markers. The majority of TdTOSX+ cells express the hematopoietic marker CD45, have a genetic and phenotypic profile resembling that of tumor infiltrating myeloid and lymphoid populations, but with higher expression of lymphocytic immune suppressive genes. We find Osx transcript and Osx protein expression early during hematopoiesis, in subsets of hematopoietic stem cells and multipotent progenitor populations. Our results indicate that Osx marks distinct tumor promoting CD45- and CD45+ populations and challenge the dogma that Osx is expressed exclusively in cells of mesenchymal origin.


Subject(s)
Cell Differentiation , Leukocyte Common Antigens/metabolism , Neoplasms/metabolism , Osteoblasts/physiology , Sp7 Transcription Factor/genetics , Stem Cells/physiology , Animals , Cell Line, Tumor , Female , Genetic Markers , Male , Mice , Mice, Inbred C57BL , Sp7 Transcription Factor/metabolism
12.
JCI Insight ; 5(13)2020 07 09.
Article in English | MEDLINE | ID: mdl-32641579

ABSTRACT

Ribosomopathies are congenital disorders caused by mutations in the genes encoding ribosomal and other functionally related proteins. They are characterized by anemia, other hematopoietic and developmental abnormalities, and p53 activation. Ribosome assembly requires coordinated expression of many ribosomal protein (RP) genes; however, the regulation of RP gene expression, especially in hematopoietic stem cells (HSCs), remains poorly understood. MYSM1 is a transcriptional regulator essential for HSC function and hematopoiesis. We established that HSC dysfunction in Mysm1 deficiency is driven by p53; however, the mechanisms of p53 activation remained unclear. Here, we describe the transcriptome of Mysm1-deficient mouse HSCs and identify MYSM1 genome-wide DNA binding sites. We establish a direct role for MYSM1 in RP gene expression and show a reduction in protein synthesis in Mysm1-/- HSCs. Loss of p53 in mice fully rescues Mysm1-/- anemia phenotype but not RP gene expression, indicating that RP gene dysregulation is a direct outcome of Mysm1 deficiency and an upstream mediator of Mysm1-/- phenotypes through p53 activation. We characterize a patient with a homozygous nonsense MYSM1 gene variant, and we demonstrate reduced protein synthesis and increased p53 levels in patient hematopoietic cells. Our work provides insights into the specialized mechanisms regulating RP gene expression in HSCs and establishes a common etiology of MYSM1 deficiency and ribosomopathy syndromes.


Subject(s)
Gene Expression/physiology , Hematopoietic Stem Cells/cytology , Ribosomal Proteins/metabolism , Trans-Activators/metabolism , Ubiquitin-Specific Proteases/metabolism , Animals , Cell Differentiation/physiology , Gene Expression/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Histones/metabolism , Mice, Transgenic , Ribosomal Proteins/genetics , Trans-Activators/genetics , Ubiquitin-Specific Proteases/genetics
13.
Cancer Discov ; 9(8): 1001-1002, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31371323

ABSTRACT

Cancer-associated fibroblasts (CAF) have been implicated in diverse and sometimes divergent tumor modulatory processes that can be explained only by the existence of heterogeneous CAF subsets. In this issue of Cancer Discovery, Elyada and colleagues utilize single-cell transcriptomics to resolve CAF heterogeneity in pancreatic ductal adenocarcinoma and identify a novel antigen-presenting CAF population.See related article by Elyada et al., p. 1102.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Fibroblasts , Humans , Single-Cell Analysis
14.
J Leukoc Biol ; 101(3): 643-654, 2017 03.
Article in English | MEDLINE | ID: mdl-27895164

ABSTRACT

MYSM1 is a chromatin-binding histone deubiquitinase. MYSM1 mutations in humans result in lymphopenia whereas loss of Mysm1 in mice causes severe hematopoietic abnormalities, including an early arrest in B cell development. However, it remains unknown whether MYSM1 is required at later checkpoints in B cell development or for B cell-mediated immune responses. We analyzed conditional mouse models Mysm1fl/flTg.mb1-cre, Mysm1fl/flTg.CD19-cre, and Mysm1fl/flTg.CD21-cre with inactivation of Mysm1 at prepro-B, pre-B, and follicular B cell stages of development. We show that loss of Mysm1 at the prepro-B cell stage in Mysm1fl/flTg.mb1-cre mice results in impaired B cell differentiation, with an ∼2-fold reduction in B cell numbers in the lymphoid organs. Mysm1fl/flTg.mb1-cre B cells also showed increased expression of activation markers and impaired survival and proliferation. In contrast, Mysm1 was largely dispensable from the pre-B cell stage onward, with Mysm1fl/flTg.CD19-cre and Mysm1fl/flTg.CD21-cre mice showing no alterations in B cell numbers and largely normal responses to stimulation. MYSM1, therefore, has an essential role in B cell lineage specification but is dispensable at later stages of development. Importantly, MYSM1 activity at the prepro-B cell stage of development is important for the normal programming of B cell responses to stimulation once they complete their maturation process.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Cycle Checkpoints , Cell Differentiation , Cell Lineage , Endopeptidases/metabolism , Immunity, Cellular , Animals , Biomarkers/metabolism , Cell Cycle Checkpoints/immunology , Cell Differentiation/immunology , Cell Proliferation , Cell Survival , Immunity, Humoral , Immunoglobulin Class Switching , Integrases/metabolism , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Knockout , Receptors, Complement 3d/metabolism , Trans-Activators , Ubiquitin-Specific Proteases
15.
Stem Cells Dev ; 24(16): 1865-77, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26125289

ABSTRACT

MYSM1 is a chromatin-interacting deubiquitinase recently shown to be essential for hematopoietic stem cell (HSC) function and normal progression of hematopoiesis in both mice and humans. However, it remains unknown whether the loss of function in Mysm1-deficient HSCs is due to the essential role of MYSM1 in establishing the HSC pool during development or due to a continuous requirement for MYSM1 in adult HSCs. In this study we, for the first time, address these questions first, by performing a detailed analysis of hematopoiesis in the fetal livers of Mysm1-knockout mice, and second, by assessing the effects of an inducible Mysm1 ablation on adult HSC functions. Our data indicate that MYSM1 is essential for normal HSC function and progression of hematopoiesis in the fetal liver. Furthermore, the inducible knockout model demonstrates a continuous requirement for MYSM1 to maintain HSC functions and antagonize p53 activation in adult bone marrow. These studies advance our understanding of the role of MYSM1 in HSC biology, and provide new insights into the human hematopoietic failure syndrome resulting from MYSM1 deficiency.


Subject(s)
Endopeptidases/genetics , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Liver/cytology , Animals , Cells, Cultured , Endopeptidases/metabolism , Hematopoietic Stem Cells/cytology , Liver/embryology , Liver/metabolism , Mice , Mice, Inbred C57BL , Trans-Activators , Ubiquitin-Specific Proteases
16.
PLoS One ; 10(2): e0117304, 2015.
Article in English | MEDLINE | ID: mdl-25680095

ABSTRACT

USP21 is a ubiquitin specific protease that catalyzes protein deubiquitination, however the identification of its physiological substrates remains challenging. USP21 is known to deubiquitinate transcription factor GATA3 and death-domain kinase RIPK1 in vitro, however the in vivo settings where this regulation plays a biologically significant role remain unknown. In order to determine whether USP21 is an essential and non-redundant regulator of GATA3 or RIPK1 activity in vivo, we characterized Usp21-deficient mice, focusing on mouse viability and development, hematopoietic stem cell function, and lymphocyte differentiation. The Usp21-knockout mice were found to be viable and fertile, with no significant dysmorphology, in contrast to the GATA3 and RIPK1 knockout lines that exhibit embryonic or perinatal lethality. Loss of USP21 also had no effect on hematopoietic stem cell function, lymphocyte development, or the responses of antigen presenting cells to TLR and TNFR stimulation. GATA3 levels in hematopoietic stem cells or T lymphocytes remained unchanged. We observed that aged Usp21-knockout mice exhibited spontaneous T cell activation, however this was not linked to altered GATA3 levels in the affected cells. The contrast in the phenotype of the Usp21-knockout line with the previously characterized GATA3 and RIPK1 knockout mice strongly indicates that USP21 is redundant for the regulation of GATA3 and RIPK1 activity during mouse development, in hematopoietic stem cells, and in lymphocyte differentiation. The Usp21-deficient mouse line characterized in this study may serve as a useful tool for the future characterization of USP21 physiological functions.


Subject(s)
Cell Differentiation/genetics , Hematopoiesis/genetics , Lymphocytes/cytology , Lymphocytes/metabolism , Animals , Cell Differentiation/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , GATA3 Transcription Factor/metabolism , Gene Order , Gene Targeting , Genetic Loci , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Immunophenotyping , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocytes/immunology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Receptors, Tumor Necrosis Factor/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Toll-Like Receptors/metabolism , Ubiquitin Thiolesterase
17.
Blood ; 125(15): 2344-8, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25710881

ABSTRACT

MYSM1 is a chromatin-binding transcriptional cofactor that deubiquitinates histone H2A. Studies of Mysm1-deficient mice have shown that it is essential for hematopoietic stem cell (HSC) function and lymphopoiesis. Human carriers of a rare MYSM1-inactivating mutation display similar lymphopoietic deficiencies. However, the mechanism by which MYSM1 regulates hematopoietic homeostasis remains unclear. Here, we show that Mysm1-deficiency results in p53 protein elevation in many hematopoietic cell types. p53 is a central regulator of cellular stress responses and HSC homeostasis. We thus generated double-knockout mice to assess a potential genetic interaction between Mysm1 and p53 in hematopoiesis. Mysm1(-/-)p53(-/-) mouse characterization showed a full rescue of Mysm1(-/-) developmental and hematopoietic defects. This included restoration of lymphopoiesis, and HSC numbers and functions. These results establish p53 activation as the driving mechanism for hematopoietic abnormalities in Mysm1 deficiency. Our findings may advance the understanding of p53 regulation in hematopoiesis and implicate MYSM1 as a potential p53 cofactor.


Subject(s)
Endopeptidases/genetics , Hematopoietic Stem Cells/pathology , Lymphopenia/genetics , Lymphopoiesis , Tumor Suppressor Protein p53/metabolism , Animals , Gene Deletion , Hematopoietic Stem Cells/metabolism , Lymphopenia/metabolism , Lymphopenia/pathology , Mice , Mice, Knockout , Trans-Activators , Tumor Suppressor Protein p53/genetics , Ubiquitin-Specific Proteases
18.
Int J Biochem Cell Biol ; 50: 161-74, 2014 May.
Article in English | MEDLINE | ID: mdl-24647359

ABSTRACT

Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology.


Subject(s)
Histones/metabolism , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Specific Proteases/metabolism , Animals , DNA Repair , Epigenomics , Humans , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...