Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466200

ABSTRACT

Rho of Plant (ROP) GTPases function as molecular switches that control signaling processes essential for growth, development, and defense. However, their role in specialized metabolism is poorly understood. Previously, we demonstrated that inhibition of protein geranylgeranyl transferase (PGGT-I) negatively impacts the biosynthesis of monoterpenoid indole alkaloids (MIA) in Madagascar periwinkle (Catharanthus roseus), indicating the involvement of prenylated proteins in signaling. Here, we show through biochemical, molecular, and in planta approaches that specific geranylgeranylated ROPs modulate C. roseus MIA biosynthesis. Among the six C. roseus ROP GTPases (CrROPs), only CrROP3 and CrROP5, having a C-terminal CSIL motif, were specifically prenylated by PGGT-I. Additionally, their transcripts showed higher expression in most parts than other CrROPs. Protein-protein interaction studies revealed that CrROP3 and CrROP5, but not ΔCrROP3, ΔCrROP5, and CrROP2 lacking the CSIL motif, interacted with CrPGGT-I. Further, CrROP3 and CrROP5 exhibited nuclear localization, whereas CrROP2 was localized to the plasma membrane. In planta functional studies revealed that silencing of CrROP3 and CrROP5 negatively affected MIA biosynthesis, while their overexpression upregulated MIA formation. In contrast, silencing and overexpression of CrROP2 had no effect on MIA biosynthesis. Moreover, overexpression of ΔCrROP3 and ΔCrROP5 mutants devoid of sequence coding for the CSIL motif failed to enhance MIA biosynthesis. These results implicate that CrROP3 and CrROP5 have a positive regulatory role on MIA biosynthesis and thus shed light on how geranylgeranylated ROP GTPases mediate the modulation of specialized metabolism in C. roseus.

2.
Plant Genome ; 16(1): e20290, 2023 03.
Article in English | MEDLINE | ID: mdl-36461675

ABSTRACT

Domain of unknown function 239 (DUF239) is a conserved sequence found in the catalytic site of Neprosins which are specific secreted prolyl endopeptidases found in the Nepenthes genus. Neprosins participate in the nitrogen cycle by digesting preys trapped in the pitcher of these carnivorous plants. Apart from that, DUF239s have been poorly documented in plants. We have identified 50 genes containing DUF239-coding sequences in the Arabidopsis genome that are distributed across six distinct phylogenetic clusters. The chromosomal distribution suggests that several genes are the result of recent duplication events, with up to eight genes found in a strict tandem distribution. In Arabidopsis, most of DUF239-containing sequences are also associated to a Neprosin-activating domain (DUF4409) and an amino-terminal α-helix which corresponds to the typical domain organization of the Neprosins described in the Nepenthes genus. Analysis of Arabidopsis transcriptomic datasets reveals that 39 genes are exclusively expressed in reproductive organs, mainly during seed development and more specifically in the endosperm (23 genes). The peculiar expression pattern of the DUF239 gene family in Arabidopsis suggests new functions of Neprosin-like proteins in plants during seed development.


Subject(s)
Arabidopsis , Endosperm , Endosperm/genetics , Endosperm/metabolism , Arabidopsis/genetics , Phylogeny , Seeds/genetics , Plant Proteins/genetics
3.
Plant Physiol Biochem ; 184: 75-86, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35636334

ABSTRACT

Maize (Zea mays L.) is one of the major cereal crops in the world and is highly sensitive to low temperature. Here, changes in photosynthetic and cell wall metabolisms were investigated during a long chilling exposure in inbred line F2 and a low-lignin near-isogenic brown midrib3 mutant (F2bm3), which has a mutation in the caffeic acid O-methyltransferase (COMT) gene. Results revealed that the plant biomass was reduced, and this was more pronounced in F2bm3. Photosynthesis was altered in both lines with distinct changes in photosynthetic pigment content between F2bm3 and F2, indicating an alternative photoprotection mechanism between lines under chilling. Starch remobilization was observed in F2bm3 while concentrations of sucrose, fructose and starch increased in F2, suggesting a reduced sugar partitioning in F2. The cell wall was altered upon chilling, resulting in changes in the composition of glucuronorabinoxylan and a reduced cellulose level in F2. Chilling shifted lignin subunit composition in F2bm3 mutant to a higher proportion of p-hydroxyphenyl (H) units, whereas it resulted in lignin with a higher proportion of syringyl (S) residues in F2. On average, the total cell wall ferulic acid (FA) content increased in both genotypes, with an increase in ether-linked FA in F2bm3, suggesting a greater degree of cross-linking to lignin. The reinforcement of the cell wall with lignin enriched in H-units and a higher concentration in cell-wall-bound FA observed in F2bm3 as a response to chilling, could be a strategy to protect the photosystems.


Subject(s)
Lignin , Zea mays , Cell Wall/metabolism , Lignin/metabolism , Photosynthesis/genetics , Starch/metabolism , Zea mays/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...