Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 62(12): 1177-81, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16981248

ABSTRACT

Growth analysis, absorption and translocation studies were conducted to compare a 1-aminomethanamide dihydrogen tetraoxosulfate (GLY-A) formulation of glyphosate with two isopropylamine (GLY-IPA-1, GLY-IPA-2) formulations of glyphosate on velvetleaf. The two isopropylamine formulations differed by the presence of a surfactant in the formulation, GLY-IPA-1 containing surfactant whereas GLY-IPA-2 did not. Four- to six-leaf velvetleaf was treated with GLY-A and GLY-IPA-1 and GLY-IPA-2 (0, 50, 67, 89, 119, 158, 280, 420, 560 and 840 g AE ha(-1)) with and without ammonium sulfate (AMS; 20 g L(-1)). GLY-A and GLY-IPA-2 included a non-ionic surfactant (2.5 mL L(-1)) in the spray solution at all herbicide concentrations. No additional surfactant was added to GLY-IPA-1. The IC50 value for GLY-A was 88 g AE ha(-1) compared with 346 and 376 g AE ha(-1) for GLY-IPA-1 and GLY-IPA-2 respectively in the absence of AMS. When AMS (20 g L(-1)) was added to the spray solution, the estimated IC50 values were 143, 76 and 60 g AE ha(-1) for GLY-IPA-1, GLY-IPA-2 and GLY-A respectively. Absorption of 14C-glyphosate into the third leaf of five- to six-leaf velvetleaf was three- to sixfold greater 72 h after treatment (HAT) when applied as GLY-A compared with GLY-IPA-1 and GLY-IPA-2 respectively in the absence of AMS. AMS (20 g L(-1)) increased absorption of 14C-glyphosate in all glyphosate formulations two- to threefold, but differences among the formulations remained. Approximately three- and sixfold more 14C-glyphosate applied as GLY-A had translocated out of the treated leaf compared with GLY-IPA-1 and GLY-IPA-2 respectively by 72 HAT. Adding AMS (20 g L(-1)) increased translocation of 14C-glyphosate out of the treated leaf approximately 2.5-fold for all three formulations. The increased efficacy of GLY-A versus GLY-IPA-1 and GLY-IPA-2 on velvetleaf is due to the greater rate of absorption and subsequent translocation of glyphosate out of the treated leaf. AMS increased the efficacy of all three formulations by increasing absorption and translocation of glyphosate in the plant.


Subject(s)
Glycine/analogs & derivatives , Herbicides/chemistry , Malvaceae/growth & development , Malvaceae/metabolism , Pesticide Synergists , Absorption , Carbon Radioisotopes , Glycine/chemistry , Surface-Active Agents , Glyphosate
2.
Pest Manag Sci ; 62(7): 617-23, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16671061

ABSTRACT

The resolved isomer of metolachlor, S-metolachlor, was registered in 1997. New formulations based primarily on the S-metolachlor isomer are more active on a gram for gram metolachlor basis than formulations based on a racemic mixture of metolachlor containing a 50:50 ratio of the R and S isomers. The labelled use rates of S-metolachlor-based products were reduced by 35% to give equivalent weed control to metolachlor. However, several companies have recently registered new metolachlor formulations with the same recommended use rates for weed control as S-metolachlor. This research was done to compare the soil behaviour and the biological activity of metolachlor and S-metolachlor in different soils under greenhouse and field conditions. Although K(d) ranged from 1.6 to 6.9 across the five soils, there were no differences in the binding of metolachlor and S-metolachlor to soil or in the rate of soil solution dissipation in a given soil. However, both greenhouse and field studies showed that S-metolachlor was 1.4-3-fold more active than metolachlor against Echinochloa crus-galli (L.) Beauv. in five different soils and that S-metolachlor was more active than metolachlor in three Colorado field locations. When the rates of metolachlor and S-metolachlor were adjusted for S isomer concentrations in the formulations, there were no differences between the formulations in field, greenhouse or bioassay studies. Thus herbicidal activity is due to the S isomers, with the R isomers being largely inactive.


Subject(s)
Acetamides/chemistry , Herbicides/chemistry , Soil/analysis , Acetamides/pharmacology , Agrostis/drug effects , Echinochloa/drug effects , Herbicides/pharmacology , Isomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...