Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(19): 30227-30238, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710569

ABSTRACT

We report the flexible on-target delivery of 800 nm wavelength, 5 GW peak power, 40 fs duration laser pulses through an evacuated and tightly coiled 10 m long hollow-core nested anti-resonant fiber by positively chirping the input pulses to compensate for the anomalous dispersion of the fiber. Near-transform-limited output pulses with high beam quality and a guided peak intensity of 3 PW/cm2 were achieved by suppressing plasma effects in the residual gas by pre-pumping the fiber with laser pulses after evacuation. This appears to cause a long-term removal of molecules from the fiber core. Identifying the fluence at the fiber core-wall interface as the damage origin, we scaled the coupled energy to 2.1 mJ using a short piece of larger-core fiber to obtain 20 GW at the fiber output. This scheme can pave the way towards the integration of anti-resonant fibers in mJ-level nonlinear optical experiments and laser-source development.

2.
Opt Express ; 31(17): 28273-28284, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710885

ABSTRACT

We experimentally and numerically investigate flat supercontinuum generation in gas-filled anti-resonant guiding hollow-core photonic crystal fiber. By comparing results obtained with either argon or nitrogen we determine the role of the rotational Raman response in the supercontinuum formation. When using argon, a supercontinuum extending from 350 nm to 2 µm is generated through modulational instability. Although argon and nitrogen exhibit similar Kerr nonlinearity and dispersion, we find that the energy density of the continuum in the normal dispersion region is significantly lower when using nitrogen. Using numerical simulations, we find that due to the closely spaced rotational lines in nitrogen, gain suppression in the fundamental mode causes part of the pump pulse to be coupled into higher-order modes which reduces the energy transfer to wavelengths shorter than the pump.

3.
Opt Lett ; 48(9): 2277-2280, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37126253

ABSTRACT

We investigate soliton self-compression and photoionization effects in an argon-filled antiresonant hollow-core photonic crystal fiber pumped with a commercial Yb:KGW laser. Before the onset of photoionization, we demonstrate self-compression of our 220 fs pump laser to 13 fs in a single and compact stage. By using the plasma driven soliton self-frequency blueshift, we also demonstrate a tunable source from 1030 to ∼700 nm. We fully characterize the compressed pulses using sum-frequency generation time-domain ptychography, experimentally revealing the full time-frequency plasma-soliton dynamics in hollow-core fiber for the first time.

4.
Nat Commun ; 13(1): 3536, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35725983

ABSTRACT

Transparent conducting oxides exhibit giant optical nonlinearities in the near-infrared window where their linear index approaches zero. Despite the magnitude and speed of these nonlinearities, a "killer" optical application for these compounds has yet to be found. Because of the absorptive nature of the typically used intraband transitions, out-of-plane configurations with short optical paths should be considered. In this direction, we propose an alternative frequency-resolved optical gating scheme for the characterization of ultra-fast optical pulses that exploits near-zero-index aluminium zinc oxide thin films. Besides the technological advantages in terms of manufacturability and cost, our system outperforms commercial modules in key metrics, such as operational bandwidth, sensitivity, and robustness. The performance enhancement comes with the additional benefit of simultaneous self-phase-matched second and third harmonic generation. Because of the fundamental importance of novel methodologies to characterise ultra-fast events, our solution could be of fundamental use for numerous research labs and industries.

5.
Opt Lett ; 46(16): 4057-4060, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34388810

ABSTRACT

We experimentally demonstrate the efficient generation of circularly polarized pulses tunable from the vacuum to deep ultraviolet (160-380 nm) through resonant dispersive wave emission from optical solitons in a gas-filled hollow capillary fiber. In the deep ultraviolet, we measure up to 13 µJ of pulse energy, and from numerical simulations, we estimate the shortest output pulse duration to be 8.5 fs. We also experimentally verify that simply scaling the pulse energy by 3/2 between linearly and circularly polarized pumping closely reproduces the soliton and dispersive wave dynamics. Based on previous results with linearly polarized self-compression and resonant dispersive wave emission, we expect our technique to be extended to produce circularly polarized few-fs pulses further into the vacuum ultraviolet, and few to sub-fs circularly polarized pulses in the near infrared.

6.
PLoS One ; 16(3): e0247915, 2021.
Article in English | MEDLINE | ID: mdl-33661973

ABSTRACT

BACKGROUND: Elevated plantar pressures represent a significant risk factor for neuropathic diabetic foot (NDF) ulceration. Foot offloading, through custom-made insoles, is essential for prevention and healing of NDF ulcerations. Objective quantitative evaluation to design custom-made insoles is not a standard method. Aims: 1) to develop a novel quantitative-statistical framework (QSF) for the evaluation and design of the insoles' offloading performance through in-shoe pressure measurement; 2) to compare the pressure-relieving efficiency of traditional shape-based total contact customised insoles (TCCI) with a novel CAD-CAM approach by the QSF. METHODS: We recruited 30 neuropathic diabetic patients in cross-sectional study design. The risk-regions of interest (R-ROIs) and their areas with in-shoe peak pressure statistically ≥200kPa were identified for each patients' foot as determined on the average of peak pressure maps ascertained per each stance phase. Repeated measures Friedman test compared R-ROIs' areas in three different walking condition: flat insole (FI); TCCI and CAD-CAM insoles. RESULTS: As compared with FI (20.6±12.9 cm2), both the TCCI (7±8.7 cm2) and the CAD-CAM (5.5±7.3 cm2) approaches provided a reduction of R-ROIs mean areas (p<0.0001). The CAD-CAM approach performed better than the TCCI with a mean pressure reduction of 37.3 kPa (15.6%) vs FI. CONCLUSIONS: The CAD-CAM strategy achieves better offloading performance than the traditional shape-only based approach. The introduced QSF provides a more rigorous method to the direct 200kPa cut-off approach outlined in the literature. It provides a statistically sound methodology to evaluate the offloading insoles design and subsequent monitoring steps. QSF allows the analysis of the whole foot's plantar surface, independently from a predetermined anatomical identification/masking. QSF can provide a detailed description about how and where custom-made insole redistributes the underfoot pressure respect to the FI. Thus, its usefulness extends to the design step, helping to guide the modifications necessary to achieve optimal offloading insole performances.


Subject(s)
Diabetic Foot/physiopathology , Diabetic Neuropathies/physiopathology , Foot Orthoses , Foot/physiopathology , Shoes , Aged , Computer-Aided Design , Cross-Sectional Studies , Diabetic Foot/therapy , Diabetic Neuropathies/therapy , Humans , Middle Aged , Pressure
7.
Opt Lett ; 45(20): 5648-5651, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33057249

ABSTRACT

We demonstrate an efficient scheme for the generation of broadband, high-energy, circularly polarized femtosecond laser pulses in the deep ultraviolet through seeded degenerate four-wave mixing in stretched gas-filled hollow capillary fibers. Pumping and seeding with circularly polarized 35 fs pulses centered at 400 nm and 800 nm, respectively, we generate idler pulses centered at 266 nm with 27 µJ of energy and over 95% spectrally averaged ellipticity. Even higher idler energies and broad spectra (27 nm bandwidth) can be obtained at the cost of reduced ellipticity. Our system can be scaled in average power and used in different spectral regions, including the vacuum ultraviolet.

8.
Opt Lett ; 45(16): 4456-4459, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32796982

ABSTRACT

Resonant dispersive wave (RDW) emission in gas-filled hollow waveguides is a powerful technique for the generation of bright few-femtosecond laser pulses from the vacuum ultraviolet to the near infrared. Here, we investigate deep-ultraviolet RDW emission in a hollow capillary fiber filled with a longitudinal gas pressure gradient. We obtain broadly similar emission to the constant-pressure case by applying a surprisingly simple scaling rule for the gas pressure and study the energy-dependent dispersive wave spectrum in detail using simulations. We further find that in addition to enabling dispersion-free delivery to experimental targets, a decreasing gradient also reduces the pulse stretching within the waveguide itself, and that transform-limited pulses with 3 fs duration can be generated by using short waveguides. Our results illuminate the fundamental dynamics underlying this frequency conversion technique and will aid in fully exploiting it for applications in ultrafast science and beyond.

9.
Opt Lett ; 44(22): 5509-5512, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730095

ABSTRACT

We report on a highly efficient experimental scheme for the generation of deep-ultraviolet (UV) ultrashort light pulses using four-wave mixing in gas-filled kagomé-style photonic crystal fiber. By pumping with ultrashort, few microjoule pulses centered at 400 nm, we generate an idler pulse at 266 nm and amplify a seeded signal at 800 nm. We achieve remarkably high pump-to-idler energy conversion efficiencies of up to 38%. Although the pump and seed pulse durations are ∼100 fs, the generated UV spectral bandwidths support sub-15 fs pulses. These can be further extended to support few-cycle pulses. Four-wave mixing in gas-filled hollow-core fibers can be scaled to high average powers and different spectral regions such as the vacuum UV (100-200 nm).

10.
Opt Lett ; 44(12): 2990-2993, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31199363

ABSTRACT

We demonstrate high-energy resonant dispersive-wave emission in the deep ultraviolet (218 to 375 nm) from optical solitons in short (15 to 34 cm) hollow capillary fibers. This down-scaling in length compared to previous results in capillaries is achieved by using small core diameters (100 and 150 µm) and pumping with 6.3 fs pulses at 800 nm. We generate pulses with energies of 4 to 6 µJ across the deep ultraviolet in a 100 µm capillary and up to 11 µJ in a 150 µm capillary. From comparisons to simulations we estimate the ultraviolet pulse to be 2 to 2.5 fs in duration. We also numerically study the influence of pump duration on the bandwidth of the dispersive wave.

11.
J Phys Chem Lett ; 10(4): 715-720, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30694062

ABSTRACT

We demonstrate, for the first time, the application of rare-gas-filled hollow-core photonic crystal fibers (HC-PCFs) as tunable ultraviolet light sources in femtosecond pump-probe spectroscopy. A critical requirement here is excellent output stability over extended periods of data acquisition, and we show this can be readily achieved. The time-resolved photoelectron imaging technique reveals nonadiabatic dynamical processes operating on three distinct time scales in the styrene molecule following excitation over the 242-258 nm region. These include ultrafast (<100 fs) internal conversion between the S2(ππ*) and S1(ππ*) electronic states and subsequent intramolecular vibrational energy redistribution within S1(ππ*). Compact, cost-effective, and highly efficient benchtop HC-PCF sources have huge potential to open up many exciting new avenues for ultrafast spectroscopy in the ultraviolet and vacuum ultraviolet spectral regions. We anticipate that our initial validation of this approach will generate important impetus in this area.

12.
Opt Express ; 23(9): 11879-86, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25969278

ABSTRACT

Raman effect in gases can generate an extremely long-living wave of coherence that can lead to the establishment of an almost perfect temporal periodic variation of the medium refractive index. We show theoretically and numerically that the equations, regulate the pulse propagation in hollow-core photonic crystal fibers filled by Raman-active gas, are exactly identical to a classical problem in quantum condensed matter physics - but with the role of space and time reversed - namely an electron in a periodic potential subject to a constant electric field. We are therefore able to infer the existence of Wannier-Stark ladders, Bloch oscillations, and Zener tunneling, phenomena that are normally associated with condensed matter physics, using purely optical means.

SELECTION OF CITATIONS
SEARCH DETAIL
...