Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 20(10): 1809-1819, 2021 10.
Article in English | MEDLINE | ID: mdl-34253595

ABSTRACT

Dual bromodomain BET inhibitors that bind with similar affinities to the first and second bromodomains across BRD2, BRD3, BRD4, and BRDT have displayed modest activity as monotherapy in clinical trials. Thrombocytopenia, closely followed by symptoms characteristic of gastrointestinal toxicity, have presented as dose-limiting adverse events that may have prevented escalation to higher dose levels required for more robust efficacy. ABBV-744 is a highly selective inhibitor for the second bromodomain of the four BET family proteins. In contrast to the broad antiproliferative activities observed with dual bromodomain BET inhibitors, ABBV-744 displayed significant antiproliferative activities largely although not exclusively in cancer cell lines derived from acute myeloid leukemia and androgen receptor positive prostate cancer. Studies in acute myeloid leukemia xenograft models demonstrated antitumor efficacy for ABBV-744 that was comparable with the pan-BET inhibitor ABBV-075 but with an improved therapeutic index. Enhanced antitumor efficacy was also observed with the combination of ABBV-744 and the BCL-2 inhibitor, venetoclax compared with monotherapies of either agent alone. These results collectively support the clinical evaluation of ABBV-744 in AML (Clinical Trials.gov identifier: NCT03360006).


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyridines/pharmacology , Pyrroles/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation , Drug Therapy, Combination , Female , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Nature ; 578(7794): 306-310, 2020 02.
Article in English | MEDLINE | ID: mdl-31969702

ABSTRACT

Proteins of the bromodomain and extra-terminal (BET) domain family are epigenetic readers that bind acetylated histones through their bromodomains to regulate gene transcription. Dual-bromodomain BET inhibitors (DbBi) that bind with similar affinities to the first (BD1) and second (BD2) bromodomains of BRD2, BRD3, BRD4 and BRDt have displayed modest clinical activity in monotherapy cancer trials. A reduced number of thrombocytes in the blood (thrombocytopenia) as well as symptoms of gastrointestinal toxicity are dose-limiting adverse events for some types of DbBi1-5. Given that similar haematological and gastrointestinal defects were observed after genetic silencing of Brd4 in mice6, the platelet and gastrointestinal toxicities may represent on-target activities associated with BET inhibition. The two individual bromodomains in BET family proteins may have distinct functions7-9 and different cellular phenotypes after pharmacological inhibition of one or both bromodomains have been reported10,11, suggesting that selectively targeting one of the bromodomains may result in a different efficacy and tolerability profile compared with DbBi. Available compounds that are selective to individual domains lack sufficient potency and the pharmacokinetics properties that are required for in vivo efficacy and tolerability assessment10-13. Here we carried out a medicinal chemistry campaign that led to the discovery of ABBV-744, a highly potent and selective inhibitor of the BD2 domain of BET family proteins with drug-like properties. In contrast to the broad range of cell growth inhibition induced by DbBi, the antiproliferative activity of ABBV-744 was largely, but not exclusively, restricted to cell lines of acute myeloid leukaemia and prostate cancer that expressed the full-length androgen receptor (AR). ABBV-744 retained robust activity in prostate cancer xenografts, and showed fewer platelet and gastrointestinal toxicities than the DbBi ABBV-07514. Analyses of RNA expression and chromatin immunoprecipitation followed by sequencing revealed that ABBV-744 displaced BRD4 from AR-containing super-enhancers and inhibited AR-dependent transcription, with less impact on global transcription compared with ABBV-075. These results underscore the potential value of selectively targeting the BD2 domain of BET family proteins for cancer therapy.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Protein Domains/drug effects , Pyridines/pharmacology , Pyrroles/pharmacology , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Pyridines/adverse effects , Pyridines/toxicity , Pyrroles/adverse effects , Pyrroles/toxicity , Rats , Receptors, Androgen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays
3.
Sci Transl Med ; 10(445)2018 06 13.
Article in English | MEDLINE | ID: mdl-29899021

ABSTRACT

Statins have shown promise as anticancer agents in experimental and epidemiologic research. However, any benefit that they provide is likely context-dependent, for example, applicable only to certain cancers or in combination with specific anticancer drugs. We report that inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) using statins enhances the proapoptotic activity of the B cell lymphoma-2 (BCL2) inhibitor venetoclax (ABT-199) in primary leukemia and lymphoma cells but not in normal human peripheral blood mononuclear cells. By blocking mevalonate production, HMGCR inhibition suppressed protein geranylgeranylation, resulting in up-regulation of proapoptotic protein p53 up-regulated modulator of apoptosis (PUMA). In support of these findings, dynamic BH3 profiling confirmed that statins primed cells for apoptosis. Furthermore, in retrospective analyses of three clinical studies of chronic lymphocytic leukemia, background statin use was associated with enhanced response to venetoclax, as demonstrated by more frequent complete responses. Together, this work provides mechanistic justification and clinical evidence to warrant prospective clinical investigation of this combination in hematologic malignancies.


Subject(s)
Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Animals , Apoptosis , Female , Hematologic Neoplasms/drug therapy , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Mice, Inbred C57BL , Retrospective Studies
4.
Mol Cancer Ther ; 16(8): 1511-1520, 2017 08.
Article in English | MEDLINE | ID: mdl-28468776

ABSTRACT

Ten percent to 15% of all lung cancers are small-cell lung cancer (SCLC). SCLC usually grows and metastasizes before it is diagnosed and relapses rapidly upon treatment. Unfortunately, no new targeted agent has been approved in the past 30 years for patients with SCLC. The BET (bromodomain and extraterminal) proteins bind acetylated histones and recruit protein complexes to promote transcription initiation and elongation. BET proteins have been shown to regulate expression of key genes in oncogenesis, such as MYC, CCND2, and BCL2L1 Here, we demonstrate that approximately 50% of SCLC cell lines are exquisitely sensitive to growth inhibition by the BET inhibitor, ABBV-075. The majority of these SCLC cell lines underwent apoptosis in response to ABBV-075 treatment via induction of caspase-3/7 activity. ABBV-075 enhanced the expression of proapoptotic protein BIM and downregulated antiapoptotic proteins BCL2 and BCLxl to a lesser extent. Furthermore, BET inhibition increased BCL2-BIM complex, thus priming the cells for apoptosis. Indeed, strong synergy was observed both in vitro and in vivo when cotreating the cells with BET inhibitor and the BH3-mimetic, BCL2 inhibitor venetoclax (ABT-199). ABBV-075 interaction with venetoclax positively correlated with BCL2 expression. Taken together, our studies provide a rationale for treating SCLC with BET and BCL2 inhibitors in tumors with high BCL2 protein expression. Mol Cancer Ther; 16(8); 1511-20. ©2017 AACR.


Subject(s)
Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Lung Neoplasms/drug therapy , Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyridones/therapeutic use , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Sulfonamides/therapeutic use , Animals , Apoptosis/drug effects , Bcl-2-Like Protein 11/metabolism , Biomarkers, Tumor/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Female , Humans , Lung Neoplasms/pathology , Mice, SCID , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyridones/pharmacology , Sulfonamides/pharmacology , Treatment Outcome , Xenograft Model Antitumor Assays , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...