Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
PLOS Digit Health ; 2(9): e0000336, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37676853

ABSTRACT

Polypharmacy has generally been assessed by raw counts of different drugs administered concomitantly to the same patients; not with respect to the likelihood of dosage-adjustments. To address this aspect of polypharmacy, the objective of the present study was to identify co-medications associated with more frequent dosage adjustments. The data foundation was electronic health records from 3.2 million inpatient admissions at Danish hospitals (2008-2016). The likelihood of dosage-adjustments when two drugs were administered concomitantly were computed using Bayesian logistic regressions. We identified 3,993 co-medication pairs that associate significantly with dosage changes when administered together. Of these pairs, 2,412 (60%) did associate with readmission, mortality or longer stays, while 308 (8%) associated with reduced kidney function. In comparison to co-medications pairs that were previously classified as drug-drug interactions, pairs not classified as drug-drug interactions had higher odds ratios of dosage modifications than drug pairs with an established interaction. Drug pairs not corresponding to known drug-drug interactions while still being associated significantly with dosage changes were prescribed to fewer patients and mentioned more rarely together in the literature. We hypothesize that some of these pairs could be associated with yet to be discovered interactions as they may be harder to identify in smaller-scale studies.

2.
Eur J Epidemiol ; 38(10): 1043-1052, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37555907

ABSTRACT

Periodic revisions of the international classification of diseases (ICD) ensure that the classification reflects new practices and knowledge; however, this complicates retrospective research as diagnoses are coded in different versions. For longitudinal disease trajectory studies, a crosswalk is an essential tool and a comprehensive mapping between ICD-8 and ICD-10 has until now been lacking. In this study, we map all ICD-8 morbidity codes to ICD-10 in the expanded Danish ICD version. We mapped ICD-8 codes to ICD-10, using a many-to-one system inspired by general equivalence mappings such that each ICD-8 code maps to a single ICD-10 code. Each ICD-8 code was manually and unidirectionally mapped to a single ICD-10 code based on medical setting and context. Each match was assigned a score (1 of 4 levels) reflecting the quality of the match and, if applicable, a "flag" signalling choices made in the mapping. We provide the first complete mapping of the 8596 ICD-8 morbidity codes to ICD-10 codes. All Danish ICD-8 codes representing diseases were mapped and 5106 (59.4%) achieved the highest consistency score. Only 334 (3.9%) of the ICD-8 codes received the lowest mapping consistency score. The mapping provides a scaffold for translation of ICD-8 to ICD-10, which enable longitudinal disease studies back to and 1969 in Denmark and to 1965 internationally with further adaption.

3.
NPJ Digit Med ; 5(1): 142, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104486

ABSTRACT

Prediction of survival for patients in intensive care units (ICUs) has been subject to intense research. However, no models exist that embrace the multiverse of data in ICUs. It is an open question whether deep learning methods using automated data integration with minimal pre-processing of mixed data domains such as free text, medical history and high-frequency data can provide discrete-time survival estimates for individual ICU patients. We trained a deep learning model on data from patients admitted to ten ICUs in the Capital Region of Denmark and the Region of Southern Denmark between 2011 and 2018. Inspired by natural language processing we mapped the electronic patient record data to an embedded representation and fed the data to a recurrent neural network with a multi-label output layer representing the chance of survival at different follow-up times. We evaluated the performance using the time-dependent concordance index. In addition, we quantified and visualized the drivers of survival predictions using the SHAP methodology. We included 37,355 admissions of 29,417 patients in our study. Our deep learning models outperformed traditional Cox proportional-hazard models with concordance index in the ranges 0.72-0.73, 0.71-0.72, 0.71, and 0.69-0.70, for models applied at baseline 0, 24, 48, and 72 h, respectively. Deep learning models based on a combination of entity embeddings and survival modelling is a feasible approach to obtain individualized survival estimates in data-rich settings such as the ICU. The interpretable nature of the models enables us to understand the impact of the different data domains.

4.
Pharmacoepidemiol Drug Saf ; 31(6): 632-642, 2022 06.
Article in English | MEDLINE | ID: mdl-35124852

ABSTRACT

PURPOSE: While the beneficial effects of medications are numerous, drug-drug interactions may lead to adverse drug reactions that are preventable causes of morbidity and mortality. Our goal was to quantify the prevalence of potential drug-drug interactions in drug prescriptions at Danish hospitals, estimate the risk of adverse outcomes associated with discouraged drug combinations, and highlight the patient types (defined by the primary diagnosis of the admission) that appear to be more affected. METHODS: This cross-sectional (descriptive part) and cohort study (adverse outcomes part) used hospital electronic health records from two Danish regions (~2.5 million people) from January 2008 through June 2016. We included all inpatients receiving two or more medications during their admission and considered concomitant prescriptions of potentially interacting drugs as per the Danish Drug Interaction Database. We measured the prevalence of potential drug-drug interactions in general and discouraged drug pairs in particular during admissions and associations with adverse outcomes: post-discharge all-cause mortality rate, readmission rate and length-of-stay. RESULTS: Among 2 886 227 hospital admissions (945 475 patients; median age 62 years [IQR: 41-74]; 54% female; median number of drugs 7 [IQR: 4-11]), patients in 1 836 170 admissions were exposed to at least one potential drug-drug interaction (659 525 patients; median age 65 years [IQR: 49-77]; 54% female; median number of drugs 9 [IQR: 6-13]) and in 27 605 admissions to a discouraged drug pair (18 192 patients; median age 68 years [IQR: 58-77]; female 46%; median number of drugs 16 [IQR: 11-22]). Meropenem-valproic acid (HR: 1.5, 95% CI: 1.1-1.9), domperidone-fluconazole (HR: 2.5, 95% CI: 2.1-3.1), imipramine-terbinafine (HR: 3.8, 95% CI: 1.2-12), agomelatine-ciprofloxacin (HR: 2.6, 95% CI: 1.3-5.5), clarithromycin-quetiapine (HR: 1.7, 95% CI: 1.1-2.7) and piroxicam-warfarin (HR: 3.4, 95% CI: 1-11.4) were associated with elevated mortality. Confidence interval bounds of pairs associated with readmission were close to 1; length-of-stay results were inconclusive. CONCLUSIONS: Well-described potential drug-drug interactions are still missed and alerts at point of prescription may reduce the risk of harming patients; prescribing clinicians should be alert when using strong inhibitor/inducer drugs (i.e. clarithromycin, valproic acid, terbinafine) and prevalent anticoagulants (i.e. warfarin and non-steroidal anti-inflammatory drugs - NSAIDs) due to their great potential for dangerous interactions. The most prominent CYP isoenzyme involved in mortality and readmission rates was 3A4.


Subject(s)
Clarithromycin , Warfarin , Aftercare , Aged , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Cohort Studies , Cross-Sectional Studies , Denmark/epidemiology , Drug Interactions , Drug Prescriptions , Female , Hospitals , Humans , Male , Middle Aged , Patient Discharge , Prevalence , Terbinafine , Valproic Acid
5.
Lancet Digit Health ; 2(4): e179-e191, 2020 04.
Article in English | MEDLINE | ID: mdl-33328078

ABSTRACT

BACKGROUND: Many mortality prediction models have been developed for patients in intensive care units (ICUs); most are based on data available at ICU admission. We investigated whether machine learning methods using analyses of time-series data improved mortality prognostication for patients in the ICU by providing real-time predictions of 90-day mortality. In addition, we examined to what extent such a dynamic model could be made interpretable by quantifying and visualising the features that drive the predictions at different timepoints. METHODS: Based on the Simplified Acute Physiology Score (SAPS) III variables, we trained a machine learning model on longitudinal data from patients admitted to four ICUs in the Capital Region, Denmark, between 2011 and 2016. We included all patients older than 16 years of age, with an ICU stay lasting more than 1 h, and who had a Danish civil registration number to enable 90-day follow-up. We leveraged static data and physiological time-series data from electronic health records and the Danish National Patient Registry. A recurrent neural network was trained with a temporal resolution of 1 h. The model was internally validated using the holdout method with 20% of the training dataset and externally validated using previously unseen data from a fifth hospital in Denmark. Its performance was assessed with the Matthews correlation coefficient (MCC) and area under the receiver operating characteristic curve (AUROC) as metrics, using bootstrapping with 1000 samples with replacement to construct 95% CIs. A Shapley additive explanations algorithm was applied to the prediction model to obtain explanations of the features that drive patient-specific predictions, and the contributions of each of the 44 features in the model were analysed and compared with the variables in the original SAPS III model. FINDINGS: From a dataset containing 15 615 ICU admissions of 12 616 patients, we included 14 190 admissions of 11 492 patients in our analysis. Overall, 90-day mortality was 33·1% (3802 patients). The deep learning model showed a predictive performance on the holdout testing dataset that improved over the timecourse of an ICU stay: MCC 0·29 (95% CI 0·25-0·33) and AUROC 0·73 (0·71-0·74) at admission, 0·43 (0·40-0·47) and 0·82 (0·80-0·84) after 24 h, 0·50 (0·46-0·53) and 0·85 (0·84-0·87) after 72 h, and 0·57 (0·54-0·60) and 0·88 (0·87-0·89) at the time of discharge. The model exhibited good calibration properties. These results were validated in an external validation cohort of 5827 patients with 6748 admissions: MCC 0·29 (95% CI 0·27-0·32) and AUROC 0·75 (0·73-0·76) at admission, 0·41 (0·39-0·44) and 0·80 (0·79-0·81) after 24 h, 0·46 (0·43-0·48) and 0·82 (0·81-0·83) after 72 h, and 0·47 (0·44-0·49) and 0·83 (0·82-0·84) at the time of discharge. INTERPRETATION: The prediction of 90-day mortality improved with 1-h sampling intervals during the ICU stay. The dynamic risk prediction can also be explained for an individual patient, visualising the features contributing to the prediction at any point in time. This explanation allows the clinician to determine whether there are elements in the current patient state and care that are potentially actionable, thus making the model suitable for further validation as a clinical tool. FUNDING: Novo Nordisk Foundation and the Innovation Fund Denmark.


Subject(s)
Data Analysis , Electronic Health Records , Hospital Mortality , Hospitalization , Intensive Care Units , Machine Learning , Models, Biological , Aged , Algorithms , Area Under Curve , Cohort Studies , Critical Illness , Female , Humans , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies , Risk Assessment , Simplified Acute Physiology Score
6.
Mol Cell Endocrinol ; 517: 110923, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32702472

ABSTRACT

Activated transcription factor (TF) farnesoid X receptor (FXR) represses glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine L cells. This, in turn, reduces insulin secretion, which is triggered when ß cells bind GLP-1. Preventing FXR activation could boost GLP-1 production and insulin secretion. Yet, FXR's broader role in L cell biology still lacks understanding. Here, we show that FXR is a multifaceted TF in L cells using proteomics and gene expression data generated on GLUTag L cells. Most striking, 252 proteins regulated upon glucose stimulation have their abundances neutralized upon FXR activation. Mitochondrial repression or glucose import block are likely mechanisms of this. Further, FXR physically targets bile acid metabolism proteins, growth factors and other TFs, regulates ChREBP, while extensive text-mining found 30 FXR-regulated proteins to be well-known in L cell biology. Taken together, this outlines FXR as a powerful TF, where GLP-1 secretion block is just one of many downstream effects.


Subject(s)
Enteroendocrine Cells/drug effects , Gene Expression Regulation/physiology , Glucagon-Like Peptide 1/metabolism , Receptors, Cytoplasmic and Nuclear/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line , Data Mining , Enteroendocrine Cells/metabolism , Gene Expression Regulation/drug effects , Gene Ontology , Gene Regulatory Networks , Glucose/pharmacology , Glycolysis , Humans , Isoxazoles/pharmacology , Mitochondria/metabolism , Protein Interaction Maps , Proteome , Transcriptome
7.
Cell Rep ; 31(11): 107763, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32553166

ABSTRACT

The network topology of a protein interactome is shaped by the function of each protein, making it a resource of functional knowledge in tissues and in single cells. Today, this resource is underused, as complete network topology characterization has proved difficult for large protein interactomes. We apply a matrix visualization and decoding approach to a physical protein interactome of a dendritic cell, thereby characterizing its topology with no prior assumptions of structure. We discover 294 proteins, each forming topological motifs called "bow-ties" that tie together the majority of observed protein complexes. The central proteins of these bow-ties have unique network properties, display multifunctional capabilities, are enriched for essential proteins, and are widely expressed in other cells and tissues. Collectively, the bow-tie motifs are a pervasive and previously unnoted topological trend in cellular interactomes. As such, these results provide fundamental knowledge on how intracellular protein connectivity is organized and operates.


Subject(s)
Models, Biological , Protein Interaction Mapping , Proteins/metabolism , Signal Transduction/physiology , Algorithms , Animals , Computational Biology/methods , Humans , Mice , Protein Interaction Mapping/methods
8.
Genet Med ; 21(11): 2485-2495, 2019 11.
Article in English | MEDLINE | ID: mdl-31019277

ABSTRACT

PURPOSE: Most chromosome abnormality patients require long-term clinical care. Awareness of mosaicism and comorbidities can potentially guide such health care. Here we present a population-wide analysis of direct and inverse comorbidities affecting patients with chromosome abnormalities. METHODS: We extracted direct and inverse comorbidities for the 11 most prevalent chromosome abnormalities from the Danish National Patient Registry (covering 6.9 million patients hospitalized between 1994 and 2015): trisomy 13, 18, and 21, Klinefelter (47,XXY), triple X, XYY, Turner (45,X), Wolf-Hirschhorn, Cri-du-chat, Angelman, and Fragile X syndromes (FXS). We also performed four sub-analyses for male/female Down syndrome (DS) and FXS and non-mosaic/mosaic DS and Turner syndrome. RESULTS: Our data cover 9,003 patients diagnosed with at least one chromosome abnormality. Each abnormality showed a unique comorbidity signature, but clustering of their profiles underlined common risk profiles for chromosome abnormalities with similar genetic backgrounds. We found that DS had a decreased risk for three inverse cancer comorbidities (lung, breast, and skin) and that male FXS and non-mosaic patients have a much more severe phenotype than female FXS and mosaic patients, respectively. CONCLUSION: Our study underlines the importance of considering mosaicism, sex, and the associated comorbidity profiles of chromosome abnormalities to guide long-term health care of affected patients.


Subject(s)
Chromosome Disorders/epidemiology , Comorbidity , Chromosome Aberrations , Denmark/epidemiology , Female , Humans , Karyotyping , Male , Mosaicism , Registries , Sex Chromosome Aberrations , Trisomy
9.
Lancet Digit Health ; 1(2): e78-e89, 2019 06.
Article in English | MEDLINE | ID: mdl-33323232

ABSTRACT

BACKGROUND: Intensive-care units (ICUs) treat the most critically ill patients, which is complicated by the heterogeneity of the diseases that they encounter. Severity scores based mainly on acute physiology measures collected at ICU admission are used to predict mortality, but are non-specific, and predictions for individual patients can be inaccurate. We investigated whether inclusion of long-term disease history before ICU admission improves mortality predictions. METHODS: Registry data for long-term disease histories for more than 230 000 Danish ICU patients were used in a neural network to develop an ICU mortality prediction model. Long-term disease histories and acute physiology measures were aggregated to predict mortality risk for patients for whom both registry and ICU electronic patient record data were available. We compared mortality predictions with admission scores on the Simplified Acute Physiology Score (SAPS) II, the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) II, and the best available multimorbidity score, the Multimorbidity Index. An external validation set from an additional hospital was acquired after model construction to confirm the validity of our model. During initial model development data were split into a training set (85%) and an independent test set (15%), and a five-fold cross-validation was done during training to avoid overfitting. Neural networks were trained for datasets with disease history of 1 month, 3 months, 6 months, 1 year, 2·5 years, 5 years, 7·5 years, 10 years, and 23 years before ICU admission. FINDINGS: Mortality predictions with a model based solely on disease history outperformed the Multimorbidity Index (Matthews correlation coefficient 0·265 vs 0·065), and performed similarly to SAPS II and APACHE II (Matthews correlation coefficient with disease history, age, and sex 0·326 vs 0·347 and 0·300 for SAPS II and APACHE II, respectively). Diagnoses up to 10 years before ICU admission affected current mortality prediction. Aggregation of previous disease history and acute physiology measures in a neural network yielded the most precise predictions of in-hospital mortality (Matthews correlation coefficient 0·391 for in-hospital mortality compared with 0·347 with SAPS II and 0·300 with APACHE II). These results for the aggregated model were validated in an external independent dataset of 1528 patients (Matthews correlation coefficient for prediction of in-hospital mortality 0·341). INTERPRETATION: Longitudinal disease-spectrum-wide data available before ICU admission are useful for mortality prediction. Disease history can be used to differentiate mortality risk between patients with similar vital signs with more precision than SAPS II and APACHE II scores. Machine learning models can be deconvoluted to generate novel understandings of how ICU patient features from long-term and short-term events interact with each other. Explainable machine learning models are key in clinical settings, and our results emphasise how to progress towards the transformation of advanced models into actionable, transparent, and trustworthy clinical tools. FUNDING: Novo Nordisk Foundation and Innovation Fund Denmark.


Subject(s)
Electronic Health Records/statistics & numerical data , Hospital Mortality , Intensive Care Units , Registries , Simplified Acute Physiology Score , Survival Analysis , APACHE , Aged , Critical Illness , Denmark , Female , Humans , Male , Middle Aged , Retrospective Studies
10.
Cell Death Dis ; 9(6): 586, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789566

ABSTRACT

The most common human sex chromosomal disorder is Klinefelter syndrome (KS; 47,XXY). Adult patients with KS display a diverse phenotype but are nearly always infertile, due to testicular degeneration at puberty. To identify mechanisms causing the selective destruction of the seminiferous epithelium, we performed RNA-sequencing of 24 fixed paraffin-embedded testicular tissue samples. Analysis of informative transcriptomes revealed 235 differentially expressed transcripts (DETs) in the adult KS testis showing enrichment of long non-coding RNAs, but surprisingly not of X-chromosomal transcripts. Comparison to 46,XY samples with complete spermatogenesis and Sertoli cell-only-syndrome allowed prediction of the cellular origin of 71 of the DETs. DACH2 and FAM9A were validated by immunohistochemistry and found to mark apparently undifferentiated somatic cell populations in the KS testes. Moreover, transcriptomes from fetal, pre-pubertal, and adult KS testes showed a limited overlap, indicating that different mechanisms are likely to operate at each developmental stage. Based on our data, we propose that testicular degeneration in men with KS is a consequence of germ cells loss initiated during early development in combination with disturbed maturation of Sertoli- and Leydig cells.


Subject(s)
Cell Differentiation/genetics , Gene Expression Profiling , Klinefelter Syndrome/genetics , Klinefelter Syndrome/pathology , Leydig Cells/pathology , Sertoli Cells/pathology , Testis/pathology , Adult , Case-Control Studies , Humans , Leydig Cells/metabolism , Male , Puberty/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sertoli Cells/metabolism , Transcriptome/genetics
11.
Nucleic Acids Res ; 46(D1): D354-D359, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29036351

ABSTRACT

miRandola (http://mirandola.iit.cnr.it/) is a database of extracellular non-coding RNAs (ncRNAs) that was initially published in 2012, foreseeing the relevance of ncRNAs as non-invasive biomarkers. An increasing amount of experimental evidence shows that ncRNAs are frequently dysregulated in diseases. Further, ncRNAs have been discovered in different extracellular forms, such as exosomes, which circulate in human body fluids. Thus, miRandola 2017 is an effort to update and collect the accumulating information on extracellular ncRNAs that is spread across scientific publications and different databases. Data are manually curated from 314 articles that describe miRNAs, long non-coding RNAs and circular RNAs. Fourteen organisms are now included in the database, and associations of ncRNAs with 25 drugs, 47 sample types and 197 diseases. miRandola also classifies extracellular RNAs based on their extracellular form: Argonaute2 protein, exosome, microvesicle, microparticle, membrane vesicle, high density lipoprotein and circulating. We also implemented a new web interface to improve the user experience.


Subject(s)
Databases, Genetic , Knowledge Bases , RNA, Untranslated , Biomarkers , Cell-Free Nucleic Acids , Data Curation , Humans , MicroRNAs , RNA , RNA, Circular , RNA, Long Noncoding , User-Computer Interface
12.
PLoS One ; 12(9): e0179112, 2017.
Article in English | MEDLINE | ID: mdl-28910296

ABSTRACT

Conserved synteny denotes evolutionary preserved gene order across species. It is not well understood to which degree functional relationships between genes are preserved in syntenic blocks. Here we investigate whether protein-coding genes conserved in mammalian syntenic blocks encode gene products that serve the common functional purpose of interacting at protein level, i.e. connectivity. High connectivity among protein-protein interactions (PPIs) was only moderately associated with conserved synteny on a genome-wide scale. However, we observed a smaller subset of 3.6% of all syntenic blocks with high-confidence PPIs that had significantly higher connectivity than expected by random. Additionally, syntenic blocks with high-confidence PPIs contained significantly more chromatin loops than the remaining blocks, indicating functional preservation among these syntenic blocks. Conserved synteny is typically defined by sequence similarity. In this study, we also examined whether a functional relationship, here PPI connectivity, can identify syntenic blocks independently of orthology. While orthology-based syntenic blocks with high-confident PPIs and the connectivity-based syntenic blocks largely overlapped, the connectivity-based approach identified additional syntenic blocks that were not found by conventional sequence-based methods alone. Additionally, the connectivity-based approach enabled identification of potential orthologous genes between species. Our analyses demonstrate that subsets of syntenic blocks are associated with highly connected proteins, and that PPI connectivity can be used to detect conserved synteny even if sequence conservation drifts beyond what orthology algorithms normally can identify.


Subject(s)
Chromatin/genetics , Chromosome Mapping/methods , Mammals/genetics , Protein Interaction Maps , Algorithms , Animals , Conserved Sequence , Dogs , Evolution, Molecular , Gene Order , Genetic Linkage , Humans , Mice , Pan troglodytes , Sequence Analysis, DNA/methods , Swine , Synteny
13.
Nature ; 548(7665): 87-91, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28746312

ABSTRACT

Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark.


Subject(s)
Genetic Variation/genetics , Genetics, Population/standards , Genome, Human/genetics , Genomics/standards , Sequence Analysis, DNA/standards , Adult , Alleles , Child , Chromosomes, Human, Y/genetics , Denmark , Female , Haplotypes/genetics , Humans , Major Histocompatibility Complex/genetics , Male , Maternal Age , Mutation Rate , Paternal Age , Point Mutation/genetics , Reference Standards
14.
Methods Mol Biol ; 1580: 281-295, 2017.
Article in English | MEDLINE | ID: mdl-28439840

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs involved in the posttranscriptional regulation of messenger RNAs (mRNAs). Each miRNA targets a specific set of mRNAs. Upon binding the miRNA inhibits mRNA translation or facilitate mRNA degradation. miRNAs are frequently deregulated in several pathologies including cancer and cardiovascular diseases. Since miRNAs have a crucial role in fine-tuning the expression of their targets, they have been proposed as biomarkers of disease progression and prognostication.In this chapter we discuss different approaches for computational predictions of miRNA targets based on sequence complementarity and integration of expression data. In the last section of the chapter we discuss new opportunities in the study of miRNA regulatory networks in the context of temporal disease progression and comorbidities.


Subject(s)
Gene Regulatory Networks , Genomics/methods , MicroRNAs/genetics , RNA, Messenger/genetics , Animals , Cardiovascular Diseases/genetics , Comorbidity , Humans , Neoplasms/genetics , Software , Systems Biology/methods , Transcriptome
15.
Hum Mol Genet ; 26(7): 1219-1229, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28369266

ABSTRACT

Klinefelter syndrome (KS) (47,XXY) is the most common male sex chromosome aneuploidy. Diagnosis and clinical supervision remain a challenge due to varying phenotypic presentation and insufficient characterization of the syndrome. Here we combine health data-driven epidemiology and molecular level systems biology to improve the understanding of KS and the molecular interplay influencing its comorbidities. In total, 78 overrepresented KS comorbidities were identified using in- and out-patient registry data from the entire Danish population covering 6.8 million individuals. The comorbidities extracted included both clinically well-known (e.g. infertility and osteoporosis) and still less established KS comorbidities (e.g. pituitary gland hypofunction and dental caries). Several systems biology approaches were applied to identify key molecular players underlying KS comorbidities: Identification of co-expressed modules as well as central hubs and gene dosage perturbed protein complexes in a KS comorbidity network build from known disease proteins and their protein-protein interactions. The systems biology approaches together pointed to novel aspects of KS disease phenotypes including perturbed Jak-STAT pathway, dysregulated genes important for disturbed immune system (IL4), energy balance (POMC and LEP) and erythropoietin signalling in KS. We present an extended epidemiological study that links KS comorbidities to the molecular level and identify potential causal players in the disease biology underlying the identified comorbidities.


Subject(s)
Chromosomes, Human, X/genetics , Gene Dosage/genetics , Klinefelter Syndrome/genetics , Systems Biology , Aneuploidy , Comorbidity , Denmark , Dental Caries/genetics , Dental Caries/pathology , Humans , Interleukin-4/genetics , Janus Kinase 1/genetics , Klinefelter Syndrome/epidemiology , Klinefelter Syndrome/pathology , Male , Pituitary Gland/metabolism , Pituitary Gland/pathology , Proprotein Convertases/genetics , STAT Transcription Factors/genetics , Testosterone/genetics
16.
Mol Hum Reprod ; 23(5): 339-354, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28333300

ABSTRACT

STUDY QUESTION: Do human adult Leydig cells (ALCs) within hyperplastic micronodules display characteristics of foetal LCs (FLCs)? SUMMARY ANSWER: The gene expression profiles of FLCs and all ALC subgroups were clearly different, but there were no significant differences in expressed genes between the normally clustered and hyperplastic ALCs. WHAT IS KNOWN ALREADY: LCs are the primary androgen producing cells in males throughout development and appear in chronologically distinct populations; FLCs, neonatal LCs and ALCs. ALCs are responsible for progression through puberty and for maintenance of reproductive functions in adulthood. In patients with reproductive problems, such as infertility or testicular cancer, and especially in men with high gonadotrophin levels, LC function is often impaired, and LCs may cluster abnormally into hyperplastic micronodules (defined as clusters of >15 LCs in a cross-section). STUDY DESIGN, SIZE, DURATION: A genome-wide microarray study of LCs microdissected from human foetal and adult tissue samples (n = 12). Additional tissue specimens (n = 15) were used for validation of the mRNA expression data at the protein level. PARTICIPANTS/MATERIALS, SETTING, METHODS: Frozen human tissue samples were used for the microarray study, including morphologically normal foetal (gestational week 10-11) testis samples, and adult testis specimens with normal LC distribution, LC micronodules or LC micronodules adjacent to hCG-producing testicular germ cell tumours. Transcriptome profiling was performed on Agilent whole human genome microarray 4 × 44 K chips. Microarray data pre-processing and statistical analysis were performed using the limma R/Bioconductor package in the R software, and differentially expressed genes were further analysed for gene set enrichment using the DAVID Bioinformatics software. Selected genes were studied at the protein level by immunohistochemistry. MAIN RESULTS AND THE ROLE OF CHANCE: The transcriptomes of FLCs and ALCs differed significantly from each other, whereas the profiles of the normally clustered and hyperplastic ALCs were similar despite morphological heterogeneity. The study revealed several genes not known previously to be expressed in LCs during early development, including sulfotransferase family 2A member 1 (SULT2A1), WNT1-inducible signalling pathway protein 2 (WISP2), hydroxyprostaglandin dehydrogenase (HPGD) and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1), whose expression changes were validated at the protein level. LARGE SCALE DATA: The transcriptomic data are deposited in ArrayExpress (accession code E-MTAB-5453). LIMITATIONS, REASONS FOR CAUTION: The small number of biological replicates and the necessity of RNA amplification due to the scarcity of human tissues, especially foetal specimens, are the main limitations of the study. Heterogeneous subpopulations of LCs within micronodules were not discriminated during microdissection and might have affected the expression profiling. The study was constrained by the lack of availability of truly normal controls. Testis samples used as 'controls' displayed complete spermatogenesis and were from patients with germ cell neoplasia but with undetectable hCG and normal hormone levels. WIDER IMPLICATIONS OF THE FINDINGS: The changes in LC morphology and function observed in patients with reproductive disorders possibly reflect subtle changes in the expression of many genes rather than regulatory changes of single genes or pathways. The study provides new insights into the development and maturation of human LCs by the identification of a number of potential functional markers for FLC and ALC. STUDY FUNDING AND COMPETING INTEREST(S): The study was supported by research grants from the Danish Cancer Society, the Capital Region's Research Fund for Health Research, Rigshospitalet's research funds, the Villum Kann Rasmussen Foundation, the Danish Innovation Fund, ReproUnion, Kirsten and Freddy Johansen's foundation and the Novo Nordisk Foundation. None of the funding agencies had any influence on the study. The authors declare no conflicts of interest.


Subject(s)
Gene Expression Regulation, Developmental , Leydig Cells/metabolism , Neoplasms, Germ Cell and Embryonal/genetics , Testicular Neoplasms/genetics , Transcriptome , Adult , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Case-Control Studies , Fetus , Gene Expression Profiling , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Leydig Cells/cytology , Male , Neoplasms, Germ Cell and Embryonal/pathology , Oligonucleotide Array Sequence Analysis , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Spermatogenesis/genetics , Sulfotransferases/genetics , Sulfotransferases/metabolism , Testicular Neoplasms/pathology
17.
Cell Syst ; 4(3): 357-364.e3, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28215527

ABSTRACT

Gene copy-number changes influence phenotypes through gene-dosage alteration and subsequent changes of protein complex stoichiometry. Human trisomies where gene copy numbers are increased uniformly over entire chromosomes provide generic cases for studying these relationships. In most trisomies, gene and protein level alterations have fatal consequences. We used genome-wide protein-protein interaction data to identify chromosome-specific patterns of protein interactions. We found that some chromosomes encode proteins that interact infrequently with each other, chromosome 21 in particular. We combined the protein interaction data with transcriptome data from human brain tissue to investigate how this pattern of global interactions may affect cellular function. We identified highly connected proteins that also had coordinated gene expression. These proteins were associated with important neurological functions affecting the characteristic phenotypes for Down syndrome and have previously been validated in mouse knockout experiments. Our approach is general and applicable to other gene-dosage changes, such as arm-level amplifications in cancer.


Subject(s)
Chromosomes/physiology , Protein Interaction Mapping/methods , Trisomy/genetics , Animals , Chromosome Aberrations , Chromosomes, Human, Pair 21/metabolism , Down Syndrome/genetics , Gene Dosage/genetics , Gene Dosage/physiology , Gene Expression Profiling/methods , Genomics/methods , Humans , Mice , Oligonucleotide Array Sequence Analysis , Transcriptome/genetics
18.
Mol Cell Endocrinol ; 444: 9-18, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28131743

ABSTRACT

Specific inbred strains and transgenic inhibin-α Simian Virus 40 T antigen (inhα/Tag) mice are genetically susceptible to gonadectomy-induced adrenocortical neoplasias. We identified altered gene expression in prepubertally gonadectomized (GDX) inhα/Tag and wild-type (WT) mice. Besides earlier reported Gata4 and Lhcgr, we found up-regulated Esr1, Prlr-rs1, and down-regulated Grb10, Mmp24, Sgcd, Rerg, Gnas, Nfatc2, Gnrhr, Igf2 in inhα/Tag adrenal tumors. Sex-steroidogenic enzyme genes expression (Srd5a1, Cyp19a1) was up-regulated in tumors, but adrenal-specific steroidogenic enzyme (Cyp21a1, Cyp11b1, Cyp11b2) down-regulated. We localized novel Lhcgr transcripts in adrenal cortex parenchyma and in non-steroidogenic A cells, in GDX WT and in intact WT mice. We identified up-regulated Esr1 as a potential novel biomarker of gonadectomy-induced adrenocortical tumors in inhα/Tag mice presenting with an inverted adrenal-to-gonadal steroidogenic gene expression profile. A putative normal adrenal remodeling or tumor suppressor role of the down-regulated genes (e.g. Grb10, Rerg, Gnas, and Nfatc2) in the tumors remains to be addressed.


Subject(s)
Adrenal Gland Neoplasms/genetics , Genes, Neoplasm , Gonadotropins/pharmacology , Animals , Biomarkers, Tumor/metabolism , GATA Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Male , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Reproducibility of Results , Steroids/biosynthesis
20.
BMC Genomics ; 16: 404, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25997618

ABSTRACT

BACKGROUND: Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown. RESULTS: We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38 or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of 'DNA methylation entropy' to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples. CONCLUSION: Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy.


Subject(s)
Alu Elements/drug effects , Antineoplastic Agents/pharmacology , Camptothecin/analogs & derivatives , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm , Antineoplastic Agents/therapeutic use , Camptothecin/pharmacology , Camptothecin/therapeutic use , Colorectal Neoplasms/drug therapy , DNA Methylation , HCT116 Cells , HT29 Cells , Humans , Irinotecan , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Oxaliplatin , SOX Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...