Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 8(21): 10497-10509, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30464822

ABSTRACT

Species distribution models (SDMs) estimate the geographical distribution of species although with several limitations due to sources of inaccuracy and biases. Empirical tests arose as the most important steps in scientific knowledge to assess the efficiency of model predictions, which are poorly rigorous in SDMs. A good approach to the empirical distribution (ED) of a species can be obtained from comprehensive empirical knowledge, that is, well-understood distributions gathered from large amount of data generated with appropriate spatial and temporal samples coverage. The aims of this study were to (a) compare different SDMs predictions with an ED; and (b) evaluate if fuzzy global matching (FGM) could be used as an index to compare SDMs predictions and ED. Six algorithms with 5 and 20 variables were used to assess their accuracy in predicting the ED of the venomous snake Bothrops alternatus (Viperidae). Its entire distribution is known, thanks to thorough field surveys across Argentina, with 1,767 records. ED was compared with SDMs predictions using Map Comparison Kit. SDMs predictions showed important biases in all methods used, from 70% sub-estimation to 40% over-estimation of ED. BIOCLIM predicted ≈31% of B. alternatus ED. DOMAIN predicted 99% of ED, but over-estimated 40% of the area. GLM with five variables calculated 75% of ED, while Genetic Algorithm for Rule-set Prediction showed ≈60% of ED; the last two presenting overpredictions in areas with favorable climatic conditions but not inhabited by the species. MaxEnt and RF were the only methods to detect isolated populations in the southern distribution of B. alternatus. Although SDMs proved useful in making predictions about species distribution, predictions need validation with expert maps knowledge and ED. Moreover, FGM showed a good performance as an index with values similar to True Skill Statistic, so that it could be used to relate ED and SDMs predictions.

2.
Ecol Evol ; 7(1): 263-271, 2017 01.
Article in English | MEDLINE | ID: mdl-28070289

ABSTRACT

One of the current challenges of evolutionary ecology is to understand the effects of phylogenetic history (PH) and/or ecological factors (EF) on the life-history traits of the species. Here, the effects of environment and phylogeny are tested for the first time on the reproductive biology of South American xenodontine snakes. We studied 60% of the tribes of this endemic and most representative clade in a temperate region of South America. A comparative method (canonical phylogenetic ordination-CPO) was used to find the relative contributions of EF and PH upon life-history aspects of snakes, comparing the reproductive mode, mean fecundity, reproductive potential, and frequency of nearly 1,000 specimens. CPO analysis showed that PH or ancestry explained most of the variation in reproduction, whereas EF explained little of this variation. The reproductive traits under study are suggested to have a strong phylogenetic signal in this clade, the ancestry playing a big role in reproduction. The EF also influenced the reproduction of South American xenodontines, although to a lesser extent. Our finding provides new evidence of how the evolutionary history is embodied in the traits of living species.

3.
PLoS One ; 10(5): e0123237, 2015.
Article in English | MEDLINE | ID: mdl-25945501

ABSTRACT

Communities are complex and dynamic systems that change with time. The first attempts to explain how they were structured involve contemporary phenomena like ecological interactions between species (e.g., competition and predation) and led to the competition-predation hypothesis. Recently, the deep history hypothesis has emerged, which suggests that profound differences in the evolutionary history of organisms resulted in a number of ecological features that remain largely on species that are part of existing communities. Nevertheless, both phylogenetic structure and ecological interactions can act together to determine the structure of a community. Because diet is one of the main niche axes, in this study we evaluated, for the first time, the impact of ecological and phylogenetic factors on the diet of Neotropical snakes from the subtropical-temperate region of South America. Additionally, we studied their relationship with morphological and environmental aspects to understand the natural history and ecology of this community. A canonical phylogenetical ordination analysis showed that phylogeny explained most of the variation in diet, whereas ecological characters explained very little of this variation. Furthermore, some snakes that shared the habitat showed some degree of diet convergence, in accordance with the competition-predation hypothesis, although phylogeny remained the major determinant in structuring this community. The clade with the greatest variability was the subfamily Dipsadinae, whose members had a very different type of diet, based on soft-bodied invertebrates. Our results are consistent with the deep history hypothesis, and we suggest that the community under study has a deep phylogenetic effect that explains most of the variation in the diet.


Subject(s)
Diet , Ecosystem , Phylogeny , Snakes/physiology , Animals , Predatory Behavior , Snakes/genetics , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...