Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Technol Ther ; 26(S3): 45-52, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377318

ABSTRACT

As all people with type 1 diabetes (T1D) and some with type 2 diabetes (T2D) require insulin, there is a need to develop management methods that not only achieve glycemic targets but also reduce the burden of living with diabetes. After insulin pumps and continuous glucose monitors, the next step in the evolution of diabetes technology is automated insulin delivery (AID) systems, which have transformed intensive insulin management over the past decade, as these systems address the shortcomings of previous management options. However, AID use remains fairly limited, and access represents a major barrier to use for many people with diabetes, despite these systems being standard of care. Therefore, the future of AID will necessitate addressing barriers related to social determinants of health, finances, and an expansion of the number and type of health care professionals (HCPs) prescribing AID systems. These crucial steps will be essential to ensure that everyone with intensively managed diabetes can use AID systems. The impact of implementing these changes will create a shift in the future of diabetes care that will result in achievement of more targeted glycemia and psychosocial outcomes for all people with diabetes and an expansion of the role of all HCPs in AID-related diabetes care. Even more importantly, by addressing social determinants of health and clinical inertia related to AID, the field can address disparities in outcomes across countries, race, gender, socioeconomic status, and insurance status. Furthermore, the increased use of AID system will provide more time during appointments for a shift in the discussion away from fine tuning insulin dosing and toward a focus on more topics related to behavior and conversations about general health. This will include psychosocial outcomes, and quality of life. In addition, these changes can hopefully allow for time to discuss more general issues, such as cardiovascular health, obesity prevention, diabetes-related complications, and other health-related concerns.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Quality of Life , Diabetes Mellitus, Type 1/drug therapy , Insulin/therapeutic use , Insulin, Regular, Human/therapeutic use , Health Personnel
2.
Endocr Pract ; 30(3): 292-303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38122931

ABSTRACT

OBJECTIVE: To review clinical trial data for incretin therapies that are approved or in late-stage development for overweight or obesity management, along with clinical implications of these therapies and future directions. METHODS: We searched for clinical trials involving incretin therapies studied specifically for overweight or obesity management in ClinicalTrials.gov and PubMed from registry inception through December 2023. RESULTS: Glucagon-like peptide-1 (GLP-1) receptor agonism, alone and in combination with glucose-dependent insulinotropic polypeptide (GIP) receptor agonism or glucagon agonism, leads to significant weight reduction in people with overweight or obesity. Newer incretin therapies have demonstrated weight reduction between 15% to 25%, far outpacing non-incretin therapies for weight management and achieving levels of weight loss that may prevent weight-related complications. However, the discontinuation of incretin therapies is associated with weight regain. The main side effects of incretin therapies are transient, mild-to-moderate gastrointestinal side effects - nausea, diarrhea, constipation, and vomiting - that commonly occur in the first 4 to 8 weeks of treatment. There is a rich late-stage pipeline of incretin therapies for weight management, consisting of oral GLP-1 receptor agonists, dual GLP-1/GIP receptor agonists, dual GLP-1/glucagon receptor agonists, triple GLP-1/GIP/glucagon receptor agonists, and combination therapies with nonincretin drugs. CONCLUSION: Newer incretin therapies for weight management have the potential to improve the treatment for overweight and obesity, the treatment and prevention of weight-related complications, and the individualization of weight management. Ensuring that these therapies are accessible - and that treatment with them is consistent and sustainable - is necessary to translate findings from trials into the real world.


Subject(s)
Diabetes Mellitus, Type 2 , Obesity Management , Humans , Incretins/therapeutic use , Incretins/pharmacology , Overweight/drug therapy , Glucagon-Like Peptide 1/therapeutic use , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/therapeutic use , Receptors, Glucagon/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Weight Loss , Glucagon-Like Peptide-1 Receptor/agonists
3.
Endocr Connect ; 12(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37610002

ABSTRACT

Insulin administration remains vital to the treatment of diabetes and although there have been advances in insulin delivery, evidence suggests that many people with diabetes on insulin therapy have suboptimal glycemic management. Recent advancements in insulin administration techniques include connected insulin devices, such as connected insulin pens and pen caps. In this review, we provide an overview of the literature on the use of connected insulin pens and pen caps to further elucidate the clinical benefits and drawbacks of these devices. We discuss the development of these devices, outlining the characteristics of insulin pens and pen caps with regulatory approvals. These devices have different features that can ease the burden of diabetes management, including automatic recording of insulin dose information, tracking of insulin-on-board, bolus calculators, and missed dose alerts. Despite the advantages of connected pens and pen caps, a small percentage of insulin users are currently using these devices, due to many factors, including lack of health-care professional awareness, initial training for prescribers, and setup of the device. Overcoming these barriers and publishing more data demonstrating the glycemic outcomes associated with these systems could improve diabetes management for people living with diabetes. As health-care systems become increasingly digital, connected insulin pens have the potential to allow a data-driven approach to diabetes management for people who are not interested in, cannot afford, or do not have intensive insulin regimens that might warrant use of insulin pumps or automated insulin delivery systems.

4.
touchREV Endocrinol ; 18(1): 27-34, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35949359

ABSTRACT

Automated insulin delivery (AID) systems play an important role in the management of type 1 diabetes mellitus (T1DM). These systems include three components: a continuous glucose monitor (CGM), an insulin pump and an algorithm that adjusts the pump based on the CGM sensor glucose readings. They are not fully automated and still require the user to administer bolus insulin doses for food. Some AID systems have automatic correction boluses, while others only have automatic basal or background insulin adjustments. As CGM has become more accurate and the technology has evolved, AID systems have demonstrated improved glycaemic outcomes. The clinical evaluation of AID systems in randomized controlled trials and real-world studies have shown their utility in helping glycaemic management. In this review, we compare AID systems that are commercially available in the US and summarize the literature, with a special focus on time in range in T1DM. The review also discusses new AID systems on the horizon and explores considerations for personalized care.

5.
Diabetes Technol Ther ; 23(S3): S81-S87, 2021 09.
Article in English | MEDLINE | ID: mdl-34546086

ABSTRACT

Numerous studies have demonstrated that use of continuous glucose monitoring (CGM) improves glycemic control and reduces diabetes-related hospitalizations and emergency room service utilization in individuals with diabetes who are treated with intensive insulin regimens. Recent studies have revealed disparities in use of CGM within racially and ethnically diverse and lower socioeconomic populations, leading to underutilization of CGM in these populations. This article reviews the scope and impact of these disparities on utilization of CGM and explores the factors that may be contributing to this issue.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Glycated Hemoglobin/analysis , Healthcare Disparities , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use
6.
Diabetes Care ; 39(6): 1027-35, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27208343

ABSTRACT

OBJECTIVE: To investigate whether addition of three different doses of liraglutide to insulin in patients with type 1 diabetes (T1D) results in significant reduction in glycemia, body weight, and insulin dose. RESEARCH DESIGN AND METHODS: We randomized 72 patients (placebo = 18, liraglutide = 54) with T1D to receive placebo and 0.6, 1.2, and 1.8 mg liraglutide daily for 12 weeks. RESULTS: In the 1.2-mg and 1.8-mg groups, the mean weekly reduction in average blood glucose was -0.55 ± 0.11 mmol/L (10 ± 2 mg/dL) and -0.55 ± 0.05 mmol/L (10 ± 1 mg/dL), respectively (P < 0.0001), while it remained unchanged in the 0.6-mg and placebo groups. In the 1.2-mg group, HbA1c fell significantly (-0.78 ± 15%, -8.5 ± 1.6 mmol/mol, P < 0.01), while it did not in the 1.8-mg group (-0.42 ± 0.15%, -4.6 ± 1.6 mmol/mol, P = 0.39) and 0.6-mg group (-0.26 ± 0.17%, -2.8 ± 1.9 mmol/mol, P = 0.81) vs. the placebo group (-0.3 ± 0.15%, -3.3 ± 1.6 mmol/mol). Glycemic variability was reduced by 5 ± 1% (P < 0.01) in the 1.2-mg group only. Total daily insulin dose fell significantly only in the 1.2-mg and 1.8-mg groups (P < 0.05). There was a 5 ± 1 kg weight loss in the two higher-dose groups (P < 0.05) and by 2.7 ± 0.6 kg (P < 0.01) in the 0.6-mg group vs. none in the placebo group. In the 1.2- and 1.8-mg groups, postprandial plasma glucagon concentration fell by 72 ± 12% and 47 ± 12%, respectively (P < 0.05). Liraglutide led to higher gastrointestinal adverse events (P < 0.05) and ≤1% increases (not significant) in percent time spent in hypoglycemia (<55 mg/dL, 3.05 mmol/L). CONCLUSIONS: Addition of 1.2 mg and 1.8 mg liraglutide to insulin over a 12-week period in overweight and obese patients with T1D results in modest reductions of weekly mean glucose levels with significant weight loss, small insulin dose reductions, and frequent gastrointestinal side effects. These findings do not justify the use of liraglutide in all patients with T1D.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Liraglutide/therapeutic use , Adult , Blood Glucose/metabolism , Body Weight , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Double-Blind Method , Drug Therapy, Combination , Female , Glucagon/metabolism , Humans , Hypoglycemia/chemically induced , Male , Middle Aged , Obesity/complications , Overweight/complications , Postprandial Period , Time Factors , Treatment Outcome
7.
Endocr Pract ; 19(6): 963-7, 2013.
Article in English | MEDLINE | ID: mdl-23807520

ABSTRACT

OBJECTIVE: Because approximately 40% of patients with type 1 diabetes have the metabolic syndrome, we tested the hypothesis that addition of liraglutide to insulin in obese patients with type 1 diabetes will result in an improvement in plasma glucose concentrations, a reduction in hemoglobin A1c (HbA1c), a fall in systolic blood pressure, and weight loss. METHODS: This is a retrospective analysis of data obtained from 27 obese patients with type 1 diabetes treated with liraglutide in addition to insulin. Patients were also treated for hypertension. Paired t tests were used to compare the changes in HbA1c, insulin doses, body weight, body mass index, 4-week mean blood glucose concentrations (28-day insulin pump mean blood glucose), blood pressure, and lipid parameters prior to and 180 ± 14 days after liraglutide therapy. RESULTS: Mean glucose concentrations fell from 191 ± 6 to 170 ± 6 mg/dL (P = .002). HbA1c fell from 7.89 ± 0.13% to 7.46 ± 0.13% (P = .001), without an increase in frequency of hypoglycemia. Mean body weight fell from 96.20 ± 3.68 kg to 91.56 ± 3.78 kg (P<.0001). Daily total and bolus doses of insulin fell from 73 ± 6 to 60 ± 4 (P = .008) units and from 40 ± 5 to 29 ± 3 units (P = .011), respectively. Mean systolic blood pressure fell from 130 ± 3 to 120 ± 4 mm Hg (P = .020). CONCLUSION: Addition of liraglutide to insulin in obese patients with type 1 diabetes mellitus leads to improvements in glycemic control and HbA1c and to reductions in insulin dose, systolic blood pressure, and body weight.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Glucagon-Like Peptide 1/analogs & derivatives , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Obesity/drug therapy , Blood Glucose/metabolism , Blood Pressure/drug effects , Body Mass Index , Body Weight/drug effects , Diabetes Mellitus, Type 1/complications , Drug Therapy, Combination , Female , Glucagon-Like Peptide 1/therapeutic use , Glycated Hemoglobin/analysis , Humans , Hypoglycemia/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Liraglutide , Male , Middle Aged , Obesity/complications , Retrospective Studies , Weight Loss/drug effects
8.
Eur J Endocrinol ; 165(1): 77-84, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21646283

ABSTRACT

OBJECTIVE: To determine whether the addition of liraglutide to insulin to treat patients with type 1 diabetes leads to an improvement in glycemic control and diminish glycemic variability. SUBJECTS AND METHODS: In this study, 14 patients with well-controlled type 1 diabetes on continuous glucose monitoring and intensive insulin therapy were treated with liraglutide for 1 week. Of the 14 patients, eight continued therapy for 24 weeks. RESULTS: In all the 14 patients, mean fasting and mean weekly glucose concentrations significantly decreased after 1 week from 130±10 to 110±8  mg/dl (P<0.01) and from 137.5±20 to 115±12  mg/dl (P<0.01) respectively. Glycemic excursions significantly improved at 1 week. The mean s.d. of glucose concentrations decreased from 56±10 to 26±6  mg/dl (P<0.01) and the coefficient of variation decreased from 39.6±10 to 22.6±7 (P<0.01). There was a concomitant fall in the basal insulin from 24.5±6 to 16.5±6 units (P<0.01) and bolus insulin from 22.5±4 to 15.5±4 units (P<0.01). In patients who continued therapy with liraglutide for 24 weeks, mean fasting, mean weekly glucose concentrations, glycemic excursions, and basal and bolus insulin dose also significantly decreased (P<0.01). HbA1c decreased significantly at 24 weeks from 6.5 to 6.1% (P=0.02), as did the body weight by 4.5±1.5  kg (P=0.02). CONCLUSION: Liraglutide treatment provides an additional strategy for improving glycemic control in type 1 diabetes. It also leads to weight loss.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Glucagon-Like Peptide 1/analogs & derivatives , Blood Glucose/metabolism , Female , Glucagon-Like Peptide 1/therapeutic use , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Liraglutide , Male , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL
...